Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046557661> ?p ?o ?g. }
- W3046557661 endingPage "102" @default.
- W3046557661 startingPage "93" @default.
- W3046557661 abstract "Deep auto-encoders (DAEs) have achieved great success in learning data representations via the powerful representability of neural networks. But most DAEs only focus on the most dominant structures which are able to reconstruct the data from a latent space and neglect rich latent structural information. In this work, we propose a new representation learning method that explicitly models and leverages sample relations, which in turn is used as supervision to guide the representation learning. Different from previous work, our framework well preserves the relations between samples. Since the prediction of pairwise relations themselves is a fundamental problem, our model adaptively learns them from data. This provides much flexibility to encode real data manifold. The important role of relation and representation learning is evaluated on the clustering task. Extensive experiments on benchmark data sets demonstrate the superiority of our approach. By seeking to embed samples into subspace, we further show that our method can address the large-scale and out-of-sample problem." @default.
- W3046557661 created "2020-08-07" @default.
- W3046557661 creator A5031863894 @default.
- W3046557661 creator A5046612317 @default.
- W3046557661 creator A5051227924 @default.
- W3046557661 creator A5052459660 @default.
- W3046557661 creator A5086988988 @default.
- W3046557661 date "2020-11-01" @default.
- W3046557661 modified "2023-09-23" @default.
- W3046557661 title "Relation-Guided Representation Learning" @default.
- W3046557661 cites W1981458038 @default.
- W3046557661 cites W1993962865 @default.
- W3046557661 cites W1997201895 @default.
- W3046557661 cites W2001141328 @default.
- W3046557661 cites W2034331023 @default.
- W3046557661 cites W2042970394 @default.
- W3046557661 cites W2077990749 @default.
- W3046557661 cites W2140095548 @default.
- W3046557661 cites W2163922914 @default.
- W3046557661 cites W2335437633 @default.
- W3046557661 cites W2575671312 @default.
- W3046557661 cites W2622869899 @default.
- W3046557661 cites W2730106296 @default.
- W3046557661 cites W2756626360 @default.
- W3046557661 cites W2774952377 @default.
- W3046557661 cites W2781829441 @default.
- W3046557661 cites W2808373708 @default.
- W3046557661 cites W2833504722 @default.
- W3046557661 cites W2883725317 @default.
- W3046557661 cites W2898233200 @default.
- W3046557661 cites W2904965361 @default.
- W3046557661 cites W2906217954 @default.
- W3046557661 cites W2946807672 @default.
- W3046557661 cites W2951270686 @default.
- W3046557661 cites W2953791858 @default.
- W3046557661 cites W2963764569 @default.
- W3046557661 cites W2963840432 @default.
- W3046557661 cites W2972333410 @default.
- W3046557661 cites W2977506081 @default.
- W3046557661 cites W2979028048 @default.
- W3046557661 cites W2979685515 @default.
- W3046557661 cites W2988613494 @default.
- W3046557661 cites W3008561560 @default.
- W3046557661 cites W3025752507 @default.
- W3046557661 cites W3033203879 @default.
- W3046557661 cites W3037214631 @default.
- W3046557661 cites W343636949 @default.
- W3046557661 doi "https://doi.org/10.1016/j.neunet.2020.07.014" @default.
- W3046557661 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32763763" @default.
- W3046557661 hasPublicationYear "2020" @default.
- W3046557661 type Work @default.
- W3046557661 sameAs 3046557661 @default.
- W3046557661 citedByCount "38" @default.
- W3046557661 countsByYear W30465576612019 @default.
- W3046557661 countsByYear W30465576612020 @default.
- W3046557661 countsByYear W30465576612021 @default.
- W3046557661 countsByYear W30465576612022 @default.
- W3046557661 countsByYear W30465576612023 @default.
- W3046557661 crossrefType "journal-article" @default.
- W3046557661 hasAuthorship W3046557661A5031863894 @default.
- W3046557661 hasAuthorship W3046557661A5046612317 @default.
- W3046557661 hasAuthorship W3046557661A5051227924 @default.
- W3046557661 hasAuthorship W3046557661A5052459660 @default.
- W3046557661 hasAuthorship W3046557661A5086988988 @default.
- W3046557661 hasBestOaLocation W30465576612 @default.
- W3046557661 hasConcept C119857082 @default.
- W3046557661 hasConcept C124101348 @default.
- W3046557661 hasConcept C154945302 @default.
- W3046557661 hasConcept C17744445 @default.
- W3046557661 hasConcept C199539241 @default.
- W3046557661 hasConcept C204321447 @default.
- W3046557661 hasConcept C25343380 @default.
- W3046557661 hasConcept C2776359362 @default.
- W3046557661 hasConcept C41008148 @default.
- W3046557661 hasConcept C94625758 @default.
- W3046557661 hasConceptScore W3046557661C119857082 @default.
- W3046557661 hasConceptScore W3046557661C124101348 @default.
- W3046557661 hasConceptScore W3046557661C154945302 @default.
- W3046557661 hasConceptScore W3046557661C17744445 @default.
- W3046557661 hasConceptScore W3046557661C199539241 @default.
- W3046557661 hasConceptScore W3046557661C204321447 @default.
- W3046557661 hasConceptScore W3046557661C25343380 @default.
- W3046557661 hasConceptScore W3046557661C2776359362 @default.
- W3046557661 hasConceptScore W3046557661C41008148 @default.
- W3046557661 hasConceptScore W3046557661C94625758 @default.
- W3046557661 hasFunder F4320321001 @default.
- W3046557661 hasFunder F4320335787 @default.
- W3046557661 hasLocation W30465576611 @default.
- W3046557661 hasLocation W30465576612 @default.
- W3046557661 hasOpenAccess W3046557661 @default.
- W3046557661 hasPrimaryLocation W30465576611 @default.
- W3046557661 hasRelatedWork W2151447942 @default.
- W3046557661 hasRelatedWork W2368651715 @default.
- W3046557661 hasRelatedWork W2611614995 @default.
- W3046557661 hasRelatedWork W2961085424 @default.
- W3046557661 hasRelatedWork W3046775127 @default.
- W3046557661 hasRelatedWork W4205958290 @default.
- W3046557661 hasRelatedWork W4286629047 @default.