Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046561353> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3046561353 endingPage "83" @default.
- W3046561353 startingPage "71" @default.
- W3046561353 abstract "While single machine MapReduce systems can squeeze out maximum performance from available multi-cores, they are often limited by the size of main memory and can thus only process small datasets. Our experience shows that the state-of-the-art single-machine in-memory MapReduce system Metis frequently experiences out-of-memory crashes. Even though today's computers are equipped with efficient secondary storage devices, the frameworks do not utilize these devices mainly because disk access latencies are much higher than those for main memory. Therefore, the single-machine setup of the Hadoop system performs much slower when it is presented with the datasets which are larger than the main memory. Moreover, such frameworks also require tuning a lot of parameters which puts an added burden on the programmer. In this paper we present OMR, an Out-of-core MapReduce system that not only successfully handles datasets that are far larger than the size of main memory, it also guarantees linear scaling with the growing data sizes. OMR actively minimizes the amount of data to be read/written to/from disk via on-the-fly aggregation and it uses block sequential disk read/write operations whenever disk accesses become necessary to avoid running out of memory. We theoretically prove OMR's linear scalability and empirically demonstrate it by processing datasets that are up to 5x larger than main memory. Our experiments show that in comparison to the standalone single-machine setup of the Hadoop system, OMR delivers far higher performance. Also in contrast to Metis, OMR avoids out-of-memory crashes for large datasets as well as delivers higher performance when datasets are small enough to fit in main memory." @default.
- W3046561353 created "2020-08-07" @default.
- W3046561353 creator A5002911389 @default.
- W3046561353 creator A5006182491 @default.
- W3046561353 creator A5026859722 @default.
- W3046561353 creator A5079780940 @default.
- W3046561353 date "2018-06-18" @default.
- W3046561353 modified "2023-10-16" @default.
- W3046561353 title "OMR: out-of-core MapReduce for large data sets" @default.
- W3046561353 cites W2033031014 @default.
- W3046561353 cites W2046697115 @default.
- W3046561353 cites W2100750049 @default.
- W3046561353 cites W2103460560 @default.
- W3046561353 cites W2104237323 @default.
- W3046561353 cites W2104644701 @default.
- W3046561353 cites W2105754437 @default.
- W3046561353 cites W2119738171 @default.
- W3046561353 cites W2129817042 @default.
- W3046561353 cites W2131071574 @default.
- W3046561353 cites W2161190431 @default.
- W3046561353 cites W2296037028 @default.
- W3046561353 cites W2604668004 @default.
- W3046561353 cites W2605185701 @default.
- W3046561353 cites W2731949733 @default.
- W3046561353 doi "https://doi.org/10.1145/3299706.3210568" @default.
- W3046561353 hasPublicationYear "2018" @default.
- W3046561353 type Work @default.
- W3046561353 sameAs 3046561353 @default.
- W3046561353 citedByCount "0" @default.
- W3046561353 crossrefType "journal-article" @default.
- W3046561353 hasAuthorship W3046561353A5002911389 @default.
- W3046561353 hasAuthorship W3046561353A5006182491 @default.
- W3046561353 hasAuthorship W3046561353A5026859722 @default.
- W3046561353 hasAuthorship W3046561353A5079780940 @default.
- W3046561353 hasConcept C111919701 @default.
- W3046561353 hasConcept C173608175 @default.
- W3046561353 hasConcept C2524010 @default.
- W3046561353 hasConcept C2777210771 @default.
- W3046561353 hasConcept C2778514511 @default.
- W3046561353 hasConcept C33923547 @default.
- W3046561353 hasConcept C41008148 @default.
- W3046561353 hasConcept C48044578 @default.
- W3046561353 hasConcept C82687282 @default.
- W3046561353 hasConceptScore W3046561353C111919701 @default.
- W3046561353 hasConceptScore W3046561353C173608175 @default.
- W3046561353 hasConceptScore W3046561353C2524010 @default.
- W3046561353 hasConceptScore W3046561353C2777210771 @default.
- W3046561353 hasConceptScore W3046561353C2778514511 @default.
- W3046561353 hasConceptScore W3046561353C33923547 @default.
- W3046561353 hasConceptScore W3046561353C41008148 @default.
- W3046561353 hasConceptScore W3046561353C48044578 @default.
- W3046561353 hasConceptScore W3046561353C82687282 @default.
- W3046561353 hasIssue "5" @default.
- W3046561353 hasLocation W30465613531 @default.
- W3046561353 hasOpenAccess W3046561353 @default.
- W3046561353 hasPrimaryLocation W30465613531 @default.
- W3046561353 hasRelatedWork W1471781652 @default.
- W3046561353 hasRelatedWork W1502408000 @default.
- W3046561353 hasRelatedWork W1525643724 @default.
- W3046561353 hasRelatedWork W1569389315 @default.
- W3046561353 hasRelatedWork W1986216254 @default.
- W3046561353 hasRelatedWork W2129200189 @default.
- W3046561353 hasRelatedWork W2302028273 @default.
- W3046561353 hasRelatedWork W2364921833 @default.
- W3046561353 hasRelatedWork W3004176791 @default.
- W3046561353 hasRelatedWork W2503642292 @default.
- W3046561353 hasVolume "53" @default.
- W3046561353 isParatext "false" @default.
- W3046561353 isRetracted "false" @default.
- W3046561353 magId "3046561353" @default.
- W3046561353 workType "article" @default.