Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046578022> ?p ?o ?g. }
- W3046578022 endingPage "6702" @default.
- W3046578022 startingPage "6690" @default.
- W3046578022 abstract "Thermoplastic composites consisting of a liquid crystalline polymer (LCP) and poly(lactide) (PLA) have the potential to combine good mechanical performance with recyclability and are therefore interesting as strong and sustainable composite materials. The viscoelastic behavior of both the LCP and the PLA is of great importance for the performance of these composites, as they determine the LCP morphology in the composite and play a crucial role in preventing the loss of mechanical performance upon recycling. Though the effect of the matrix viscosity is well-documented in literature, well-controlled systems where the LCP viscosity is tailored are not reported. Therefore, four LCPs, with the same chemical backbone but different molecular weights, are used to produce reinforced LCP-PLA composites. The differences in viscosity of the LCPs and viscosity ratio between the dispersed phase and the matrix of the blends are evident in the resultant composite morphology: in all cases fibrils are formed; however, the diameter increases considerably as the viscosity ratio increases for the higher molar mass LCPs. The fibril diameter ranges from several hundred nanometer to a few micrometer. A typical layered structure in the injection molded composites is observed, where the layer-thickness is influenced by the LCP viscosity. The LCPs are found to effectively reinforce the PLLA matrix, increasing the Young’s modulus by 60% and the maximum stress by 40% for the composite containing 30 wt % of the most viscous LCP. Remarkably, this did not result in an increase in brittleness, effectively increasing the toughness of the composite compared to pure PLLA. The feasible reprocessability of this composite is confirmed, by subjecting it to three reprocessing cycles. The relaxation of the LCPs orientation upon heating is measured via in situ WAXD. We compare the relaxation in an amorphous PLA matrix and in a semicrystalline PLLA matrix with that of the pure LCPs. The matrix viscosity is found to strongly influence the relaxation. For example, in a low viscous amorphous matrix relaxation of the LCP fibrils into droplets dominates the process, whereas a semicrystalline matrix helps in maintaining the fibril morphology and intermolecular orientation of the LCP. In the latter case, the LCPs relax via contraction and coalescence of the polydomain texture and maintains a significant degree of orientation until the PLLA crystals melt and the matrix viscosity decreases. The insights gained in this study on the role of the LCP viscosity on the morphology and performance of thermoplastic composites, as well as the relaxation of LCPs in a matrix, will aid progression toward sustainable and reprocessable LCP reinforced thermoplastic composites." @default.
- W3046578022 created "2020-08-07" @default.
- W3046578022 creator A5019723451 @default.
- W3046578022 creator A5020283285 @default.
- W3046578022 creator A5025120753 @default.
- W3046578022 creator A5036902542 @default.
- W3046578022 creator A5037963223 @default.
- W3046578022 creator A5047755336 @default.
- W3046578022 creator A5055017858 @default.
- W3046578022 date "2020-07-30" @default.
- W3046578022 modified "2023-10-09" @default.
- W3046578022 title "Importance of Viscosity Control for Recyclable Reinforced Thermoplastic Composites" @default.
- W3046578022 cites W1904453842 @default.
- W3046578022 cites W1965358433 @default.
- W3046578022 cites W1975426373 @default.
- W3046578022 cites W1975810535 @default.
- W3046578022 cites W1979026109 @default.
- W3046578022 cites W1980428904 @default.
- W3046578022 cites W1981634389 @default.
- W3046578022 cites W1982077355 @default.
- W3046578022 cites W1984991496 @default.
- W3046578022 cites W1985387762 @default.
- W3046578022 cites W1985477138 @default.
- W3046578022 cites W1986427340 @default.
- W3046578022 cites W1993762065 @default.
- W3046578022 cites W2003701569 @default.
- W3046578022 cites W2004366454 @default.
- W3046578022 cites W2005135893 @default.
- W3046578022 cites W2022822276 @default.
- W3046578022 cites W2040920405 @default.
- W3046578022 cites W2043073278 @default.
- W3046578022 cites W2053968151 @default.
- W3046578022 cites W2061639543 @default.
- W3046578022 cites W2062561045 @default.
- W3046578022 cites W2068583153 @default.
- W3046578022 cites W2077958846 @default.
- W3046578022 cites W2083452695 @default.
- W3046578022 cites W2094798975 @default.
- W3046578022 cites W2096793932 @default.
- W3046578022 cites W2131948212 @default.
- W3046578022 cites W2137786463 @default.
- W3046578022 cites W2138295768 @default.
- W3046578022 cites W2144726159 @default.
- W3046578022 cites W2145911438 @default.
- W3046578022 cites W2154504800 @default.
- W3046578022 cites W2160944620 @default.
- W3046578022 cites W2167536725 @default.
- W3046578022 cites W2168028606 @default.
- W3046578022 cites W2314432961 @default.
- W3046578022 cites W2555756831 @default.
- W3046578022 cites W2887997168 @default.
- W3046578022 cites W2964748227 @default.
- W3046578022 cites W2996580024 @default.
- W3046578022 cites W4247279271 @default.
- W3046578022 cites W95964401 @default.
- W3046578022 doi "https://doi.org/10.1021/acs.macromol.9b02689" @default.
- W3046578022 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8290909" @default.
- W3046578022 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34305176" @default.
- W3046578022 hasPublicationYear "2020" @default.
- W3046578022 type Work @default.
- W3046578022 sameAs 3046578022 @default.
- W3046578022 citedByCount "4" @default.
- W3046578022 countsByYear W30465780222021 @default.
- W3046578022 countsByYear W30465780222022 @default.
- W3046578022 crossrefType "journal-article" @default.
- W3046578022 hasAuthorship W3046578022A5019723451 @default.
- W3046578022 hasAuthorship W3046578022A5020283285 @default.
- W3046578022 hasAuthorship W3046578022A5025120753 @default.
- W3046578022 hasAuthorship W3046578022A5036902542 @default.
- W3046578022 hasAuthorship W3046578022A5037963223 @default.
- W3046578022 hasAuthorship W3046578022A5047755336 @default.
- W3046578022 hasAuthorship W3046578022A5055017858 @default.
- W3046578022 hasBestOaLocation W30465780223 @default.
- W3046578022 hasConcept C104779481 @default.
- W3046578022 hasConcept C127172972 @default.
- W3046578022 hasConcept C136478896 @default.
- W3046578022 hasConcept C159985019 @default.
- W3046578022 hasConcept C178790620 @default.
- W3046578022 hasConcept C185592680 @default.
- W3046578022 hasConcept C186541917 @default.
- W3046578022 hasConcept C192562407 @default.
- W3046578022 hasConcept C193867417 @default.
- W3046578022 hasConcept C200990466 @default.
- W3046578022 hasConcept C2781247691 @default.
- W3046578022 hasConcept C44280652 @default.
- W3046578022 hasConcept C521977710 @default.
- W3046578022 hasConcept C99595764 @default.
- W3046578022 hasConceptScore W3046578022C104779481 @default.
- W3046578022 hasConceptScore W3046578022C127172972 @default.
- W3046578022 hasConceptScore W3046578022C136478896 @default.
- W3046578022 hasConceptScore W3046578022C159985019 @default.
- W3046578022 hasConceptScore W3046578022C178790620 @default.
- W3046578022 hasConceptScore W3046578022C185592680 @default.
- W3046578022 hasConceptScore W3046578022C186541917 @default.
- W3046578022 hasConceptScore W3046578022C192562407 @default.
- W3046578022 hasConceptScore W3046578022C193867417 @default.
- W3046578022 hasConceptScore W3046578022C200990466 @default.
- W3046578022 hasConceptScore W3046578022C2781247691 @default.