Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046620880> ?p ?o ?g. }
- W3046620880 endingPage "8325" @default.
- W3046620880 startingPage "8316" @default.
- W3046620880 abstract "Recognition of facial expressions across various actors, contexts, and recording conditions in real-world videos involves identifying local facial movements. Hence, it is important to discover the formation of expressions from local representations captured from different parts of the face. So in this paper, we propose a dynamic kernel-based representation for facial expressions that assimilates facial movements captured using local spatio-temporal representations in a large universal Gaussian mixture model (uGMM). These dynamic kernels are used to preserve local similarities while handling global context changes for the same expression by utilizing the statistics of uGMM. We demonstrate the efficacy of dynamic kernel representation using three different dynamic kernels, namely, explicit mapping based, probability-based, and matching-based, on three standard facial expression datasets, namely, MMI, AFEW, and BP4D. Our evaluations show that probability-based kernels are the most discriminative among the dynamic kernels. However, in terms of computational complexity, intermediate matching kernels are more efficient as compared to the other two representations." @default.
- W3046620880 created "2020-08-07" @default.
- W3046620880 creator A5012566120 @default.
- W3046620880 creator A5026751171 @default.
- W3046620880 creator A5060306211 @default.
- W3046620880 date "2020-01-01" @default.
- W3046620880 modified "2023-10-18" @default.
- W3046620880 title "Facial Expression Recognition in Videos Using Dynamic Kernels" @default.
- W3046620880 cites W1486156117 @default.
- W3046620880 cites W1503387401 @default.
- W3046620880 cites W1607052709 @default.
- W3046620880 cites W1981278353 @default.
- W3046620880 cites W1981918162 @default.
- W3046620880 cites W1993868489 @default.
- W3046620880 cites W2014185685 @default.
- W3046620880 cites W2023486316 @default.
- W3046620880 cites W2028016407 @default.
- W3046620880 cites W2051297709 @default.
- W3046620880 cites W2068611653 @default.
- W3046620880 cites W2068640973 @default.
- W3046620880 cites W2077396633 @default.
- W3046620880 cites W2085283108 @default.
- W3046620880 cites W2101866605 @default.
- W3046620880 cites W2134860945 @default.
- W3046620880 cites W2139212933 @default.
- W3046620880 cites W2149338142 @default.
- W3046620880 cites W2153635508 @default.
- W3046620880 cites W2155230809 @default.
- W3046620880 cites W2156503193 @default.
- W3046620880 cites W2159727956 @default.
- W3046620880 cites W2160947254 @default.
- W3046620880 cites W2161634108 @default.
- W3046620880 cites W2198512331 @default.
- W3046620880 cites W2205937646 @default.
- W3046620880 cites W2217426128 @default.
- W3046620880 cites W2280620570 @default.
- W3046620880 cites W2308837722 @default.
- W3046620880 cites W2329236375 @default.
- W3046620880 cites W2345305417 @default.
- W3046620880 cites W2479639417 @default.
- W3046620880 cites W2584131488 @default.
- W3046620880 cites W2585658440 @default.
- W3046620880 cites W2600389231 @default.
- W3046620880 cites W2767488767 @default.
- W3046620880 cites W2767520979 @default.
- W3046620880 cites W2885963772 @default.
- W3046620880 cites W2963716094 @default.
- W3046620880 cites W3012115983 @default.
- W3046620880 cites W3102412487 @default.
- W3046620880 cites W4250262725 @default.
- W3046620880 cites W914561379 @default.
- W3046620880 doi "https://doi.org/10.1109/tip.2020.3011846" @default.
- W3046620880 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32746249" @default.
- W3046620880 hasPublicationYear "2020" @default.
- W3046620880 type Work @default.
- W3046620880 sameAs 3046620880 @default.
- W3046620880 citedByCount "44" @default.
- W3046620880 countsByYear W30466208802019 @default.
- W3046620880 countsByYear W30466208802021 @default.
- W3046620880 countsByYear W30466208802022 @default.
- W3046620880 countsByYear W30466208802023 @default.
- W3046620880 crossrefType "journal-article" @default.
- W3046620880 hasAuthorship W3046620880A5012566120 @default.
- W3046620880 hasAuthorship W3046620880A5026751171 @default.
- W3046620880 hasAuthorship W3046620880A5060306211 @default.
- W3046620880 hasConcept C105795698 @default.
- W3046620880 hasConcept C114614502 @default.
- W3046620880 hasConcept C121332964 @default.
- W3046620880 hasConcept C144024400 @default.
- W3046620880 hasConcept C151730666 @default.
- W3046620880 hasConcept C153180895 @default.
- W3046620880 hasConcept C154945302 @default.
- W3046620880 hasConcept C163716315 @default.
- W3046620880 hasConcept C165064840 @default.
- W3046620880 hasConcept C17744445 @default.
- W3046620880 hasConcept C195704467 @default.
- W3046620880 hasConcept C199360897 @default.
- W3046620880 hasConcept C199539241 @default.
- W3046620880 hasConcept C2776359362 @default.
- W3046620880 hasConcept C2779304628 @default.
- W3046620880 hasConcept C2779343474 @default.
- W3046620880 hasConcept C2987714656 @default.
- W3046620880 hasConcept C31510193 @default.
- W3046620880 hasConcept C33923547 @default.
- W3046620880 hasConcept C36289849 @default.
- W3046620880 hasConcept C41008148 @default.
- W3046620880 hasConcept C62520636 @default.
- W3046620880 hasConcept C74193536 @default.
- W3046620880 hasConcept C86803240 @default.
- W3046620880 hasConcept C90559484 @default.
- W3046620880 hasConcept C94625758 @default.
- W3046620880 hasConcept C97931131 @default.
- W3046620880 hasConceptScore W3046620880C105795698 @default.
- W3046620880 hasConceptScore W3046620880C114614502 @default.
- W3046620880 hasConceptScore W3046620880C121332964 @default.
- W3046620880 hasConceptScore W3046620880C144024400 @default.
- W3046620880 hasConceptScore W3046620880C151730666 @default.
- W3046620880 hasConceptScore W3046620880C153180895 @default.