Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046641708> ?p ?o ?g. }
- W3046641708 endingPage "113782" @default.
- W3046641708 startingPage "113782" @default.
- W3046641708 abstract "Currently, legal requirements demand that insurance companies increase their emphasis on monitoring the risks linked to the underwriting and asset management activities. Regarding underwriting risks, the main uncertainties that insurers must manage are related to the premium sufficiency to cover future claims and the adequacy of the current reserves to pay outstanding claims. Both risks are calibrated using stochastic models due to their nature. This paper introduces a reserving model based on a set of machine learning techniques such as Gradient Boosting, Random Forest and Artificial Neural Networks. These algorithms and other widely used reserving models are stacked to predict the shape of the runoff. To compute the deviation around a former prediction, a log-normal approach is combined with the suggested model. The empirical results demonstrate that the proposed methodology can be used to improve the performance of the traditional reserving techniques based on Bayesian statistics and a Chain Ladder, leading to a more accurate assessment of the reserving risk." @default.
- W3046641708 created "2020-08-07" @default.
- W3046641708 creator A5028859829 @default.
- W3046641708 creator A5030911984 @default.
- W3046641708 creator A5045823225 @default.
- W3046641708 date "2021-01-01" @default.
- W3046641708 modified "2023-09-27" @default.
- W3046641708 title "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network" @default.
- W3046641708 cites W1506806321 @default.
- W3046641708 cites W1522301498 @default.
- W3046641708 cites W1528905581 @default.
- W3046641708 cites W1554944419 @default.
- W3046641708 cites W1596746635 @default.
- W3046641708 cites W1678356000 @default.
- W3046641708 cites W1892665234 @default.
- W3046641708 cites W1966268755 @default.
- W3046641708 cites W1971735090 @default.
- W3046641708 cites W1973631422 @default.
- W3046641708 cites W1984367183 @default.
- W3046641708 cites W1988115241 @default.
- W3046641708 cites W1993693796 @default.
- W3046641708 cites W1995341919 @default.
- W3046641708 cites W2021676252 @default.
- W3046641708 cites W2030289141 @default.
- W3046641708 cites W2045185238 @default.
- W3046641708 cites W2046336369 @default.
- W3046641708 cites W2051260082 @default.
- W3046641708 cites W2053467329 @default.
- W3046641708 cites W2056132907 @default.
- W3046641708 cites W2059688066 @default.
- W3046641708 cites W2073375386 @default.
- W3046641708 cites W2073425361 @default.
- W3046641708 cites W2085481869 @default.
- W3046641708 cites W2087709272 @default.
- W3046641708 cites W2097536801 @default.
- W3046641708 cites W2102626610 @default.
- W3046641708 cites W2103496339 @default.
- W3046641708 cites W2124349276 @default.
- W3046641708 cites W2125876631 @default.
- W3046641708 cites W2126830712 @default.
- W3046641708 cites W2127609994 @default.
- W3046641708 cites W2134548066 @default.
- W3046641708 cites W2137356002 @default.
- W3046641708 cites W2143956139 @default.
- W3046641708 cites W2154996067 @default.
- W3046641708 cites W2158825179 @default.
- W3046641708 cites W2181411118 @default.
- W3046641708 cites W2186142521 @default.
- W3046641708 cites W2257979135 @default.
- W3046641708 cites W2288210737 @default.
- W3046641708 cites W2340093746 @default.
- W3046641708 cites W2563902504 @default.
- W3046641708 cites W2626778328 @default.
- W3046641708 cites W2772709170 @default.
- W3046641708 cites W2794135124 @default.
- W3046641708 cites W2794203394 @default.
- W3046641708 cites W2795288700 @default.
- W3046641708 cites W2797583072 @default.
- W3046641708 cites W2891199867 @default.
- W3046641708 cites W2911964244 @default.
- W3046641708 cites W2921809274 @default.
- W3046641708 cites W2924317936 @default.
- W3046641708 cites W2924657543 @default.
- W3046641708 cites W2943613385 @default.
- W3046641708 cites W2963341956 @default.
- W3046641708 cites W3030163527 @default.
- W3046641708 cites W3099144073 @default.
- W3046641708 cites W3121943004 @default.
- W3046641708 cites W3122046970 @default.
- W3046641708 cites W3122886974 @default.
- W3046641708 cites W3123626030 @default.
- W3046641708 cites W3124155640 @default.
- W3046641708 cites W3125537303 @default.
- W3046641708 cites W3146803896 @default.
- W3046641708 cites W933644141 @default.
- W3046641708 doi "https://doi.org/10.1016/j.eswa.2020.113782" @default.
- W3046641708 hasPublicationYear "2021" @default.
- W3046641708 type Work @default.
- W3046641708 sameAs 3046641708 @default.
- W3046641708 citedByCount "1" @default.
- W3046641708 countsByYear W30466417082022 @default.
- W3046641708 crossrefType "journal-article" @default.
- W3046641708 hasAuthorship W3046641708A5028859829 @default.
- W3046641708 hasAuthorship W3046641708A5030911984 @default.
- W3046641708 hasAuthorship W3046641708A5045823225 @default.
- W3046641708 hasBestOaLocation W30466417082 @default.
- W3046641708 hasConcept C119857082 @default.
- W3046641708 hasConcept C144133560 @default.
- W3046641708 hasConcept C154945302 @default.
- W3046641708 hasConcept C162118730 @default.
- W3046641708 hasConcept C169258074 @default.
- W3046641708 hasConcept C26503482 @default.
- W3046641708 hasConcept C41008148 @default.
- W3046641708 hasConcept C50644808 @default.
- W3046641708 hasConceptScore W3046641708C119857082 @default.
- W3046641708 hasConceptScore W3046641708C144133560 @default.
- W3046641708 hasConceptScore W3046641708C154945302 @default.
- W3046641708 hasConceptScore W3046641708C162118730 @default.