Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046758874> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3046758874 endingPage "311" @default.
- W3046758874 startingPage "301" @default.
- W3046758874 abstract "Traditional methods in many areas have been replaced by modern methods known as machine learning with the rapidly developing technology and innovations in science. One of these areas is real estate valuation (appraisal) area. Real estate appraisal can be conducted on a single real estate as well as appraisal of more than one real estate together, which is called as mass appraisal, is possible. In this study, a mass appraisal is performed by a Random Forest Regression method, and the results were evaluated. For this purpose, data of 189 flats expected real value and their 13 variables were collected in Yenimahalle, Ankara. 75% of these data were used as training data and 25% as test data. According to the results, a difference of at minimum 600 TL, maximum 60.000 TL and averagely 25.000 TL were observed between the predicted value by the Random Forest regression and the expected real value. According to these results, random forest regression is a successful method in mass appraisal, and it is observed that valuation with different machine learning methods such as random forest regression has a positive effect on time and labor force comparing with valuation of real estate by traditional methods individually." @default.
- W3046758874 created "2020-08-07" @default.
- W3046758874 creator A5019434339 @default.
- W3046758874 creator A5021434579 @default.
- W3046758874 date "2020-07-31" @default.
- W3046758874 modified "2023-10-18" @default.
- W3046758874 title "Mass Apprasial With A Machine Learning Algorithm: Random Forest Regression" @default.
- W3046758874 cites W1485137801 @default.
- W3046758874 cites W1504778066 @default.
- W3046758874 cites W1754495824 @default.
- W3046758874 cites W1979249583 @default.
- W3046758874 cites W1988980926 @default.
- W3046758874 cites W2031356564 @default.
- W3046758874 cites W2032206327 @default.
- W3046758874 cites W2070300253 @default.
- W3046758874 cites W2094496064 @default.
- W3046758874 cites W2159177827 @default.
- W3046758874 cites W2751758508 @default.
- W3046758874 cites W2892821018 @default.
- W3046758874 cites W2900860288 @default.
- W3046758874 cites W2911964244 @default.
- W3046758874 cites W2912934387 @default.
- W3046758874 cites W3011213261 @default.
- W3046758874 doi "https://doi.org/10.17671/gazibtd.555784" @default.
- W3046758874 hasPublicationYear "2020" @default.
- W3046758874 type Work @default.
- W3046758874 sameAs 3046758874 @default.
- W3046758874 citedByCount "3" @default.
- W3046758874 countsByYear W30467588742021 @default.
- W3046758874 countsByYear W30467588742023 @default.
- W3046758874 crossrefType "journal-article" @default.
- W3046758874 hasAuthorship W3046758874A5019434339 @default.
- W3046758874 hasAuthorship W3046758874A5021434579 @default.
- W3046758874 hasBestOaLocation W30467588741 @default.
- W3046758874 hasConcept C10138342 @default.
- W3046758874 hasConcept C105795698 @default.
- W3046758874 hasConcept C11413529 @default.
- W3046758874 hasConcept C119857082 @default.
- W3046758874 hasConcept C149782125 @default.
- W3046758874 hasConcept C152877465 @default.
- W3046758874 hasConcept C154945302 @default.
- W3046758874 hasConcept C162118730 @default.
- W3046758874 hasConcept C162324750 @default.
- W3046758874 hasConcept C169258074 @default.
- W3046758874 hasConcept C186027771 @default.
- W3046758874 hasConcept C205664371 @default.
- W3046758874 hasConcept C2991739101 @default.
- W3046758874 hasConcept C33923547 @default.
- W3046758874 hasConcept C41008148 @default.
- W3046758874 hasConcept C48921125 @default.
- W3046758874 hasConcept C82279013 @default.
- W3046758874 hasConcept C83546350 @default.
- W3046758874 hasConceptScore W3046758874C10138342 @default.
- W3046758874 hasConceptScore W3046758874C105795698 @default.
- W3046758874 hasConceptScore W3046758874C11413529 @default.
- W3046758874 hasConceptScore W3046758874C119857082 @default.
- W3046758874 hasConceptScore W3046758874C149782125 @default.
- W3046758874 hasConceptScore W3046758874C152877465 @default.
- W3046758874 hasConceptScore W3046758874C154945302 @default.
- W3046758874 hasConceptScore W3046758874C162118730 @default.
- W3046758874 hasConceptScore W3046758874C162324750 @default.
- W3046758874 hasConceptScore W3046758874C169258074 @default.
- W3046758874 hasConceptScore W3046758874C186027771 @default.
- W3046758874 hasConceptScore W3046758874C205664371 @default.
- W3046758874 hasConceptScore W3046758874C2991739101 @default.
- W3046758874 hasConceptScore W3046758874C33923547 @default.
- W3046758874 hasConceptScore W3046758874C41008148 @default.
- W3046758874 hasConceptScore W3046758874C48921125 @default.
- W3046758874 hasConceptScore W3046758874C82279013 @default.
- W3046758874 hasConceptScore W3046758874C83546350 @default.
- W3046758874 hasIssue "3" @default.
- W3046758874 hasLocation W30467588741 @default.
- W3046758874 hasLocation W30467588742 @default.
- W3046758874 hasOpenAccess W3046758874 @default.
- W3046758874 hasPrimaryLocation W30467588741 @default.
- W3046758874 hasRelatedWork W1549995256 @default.
- W3046758874 hasRelatedWork W236370215 @default.
- W3046758874 hasRelatedWork W2375721435 @default.
- W3046758874 hasRelatedWork W2376394614 @default.
- W3046758874 hasRelatedWork W3194410628 @default.
- W3046758874 hasRelatedWork W4206219591 @default.
- W3046758874 hasRelatedWork W4290879003 @default.
- W3046758874 hasRelatedWork W1512454434 @default.
- W3046758874 hasRelatedWork W2738033194 @default.
- W3046758874 hasRelatedWork W3124711466 @default.
- W3046758874 hasVolume "13" @default.
- W3046758874 isParatext "false" @default.
- W3046758874 isRetracted "false" @default.
- W3046758874 magId "3046758874" @default.
- W3046758874 workType "article" @default.