Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046820820> ?p ?o ?g. }
- W3046820820 endingPage "106127" @default.
- W3046820820 startingPage "106127" @default.
- W3046820820 abstract "Abstract Objectives: This study aimed to combine in vitro phenotyping analysis and whole-genome-sequencing (WGS) to characterise the phenotype and genetic determinants associated with intrinsic resistance in 100 clinical and non-clinical Acinetobacter baumannii strains originating from Germany and Vietnam. Moreover, it aimed to assess whether powdered milk as a food source functions as a potential reservoir of antibiotic resistance and possesses similar antimicrobial resistance (AMR) genes as in clinical strains isolated from Germany. Methods: Antimicrobial susceptibility testing was performed using the broth microdilution method and the minimum inhibitory concentration (MIC) was determined for 18 antibiotics. The WGS data from all isolates were mapped to intrinsic genes known to be associated with phenotypic AMR. Results: The highest resistance frequency was observed for chloramphenicol (100%), followed by fosfomycin (96%) and cefotaxime (95%). The lowest resistant rates were observed for colistin (3%), trimethoprim/sulfamethoxazole (17%), tigecycline (19%), and amikacin (19%). Thirty-five percent of tested strains displayed resistance to at least one of the carbapenems. Resistance to fluoroquinolones, aminoglycosides, tigecycline, penicillins, trimethoprim/sulfamethoxazole, and fourth-generation cephalosporins was determined only in human strains. About one-quarter of isolates (24%) was multidrug-resistant (MDR) and all were of human origin. Among them, 16 isolates were extensively drug resistant (XDR) and 10 from those 16 isolates showed resistance to all tested antibiotics except colistin. In silico detection of intrinsic AMR genes revealed the presence of 36 β-lactamases and 24 non-β-lactamase resistance genes. Two colistin-resistant and 10 ertapenem-resistant strains were isolated from powdered milk produced in Germany. Thirty-eight AMR genes associated with resistance to antibiotics were found in isolates recovered from milk powder. Several resistance mechanisms towards many classes of antibiotics existed in A. baumannii including β-lactamases, multidrug efflux pumps and aminoglycoside-modifying enzymes. Conclusion: The use of WGS for routine public health surveillance is a reliable method for the rapid detection of emerging AMR in A. baumannii isolates. Milk powder poses a risk to contain MDR Acinetobacter strains or resistance genes in Germany." @default.
- W3046820820 created "2020-08-07" @default.
- W3046820820 creator A5017761988 @default.
- W3046820820 creator A5019017859 @default.
- W3046820820 creator A5031249859 @default.
- W3046820820 creator A5031759637 @default.
- W3046820820 creator A5035844466 @default.
- W3046820820 creator A5045025427 @default.
- W3046820820 creator A5058098097 @default.
- W3046820820 creator A5065659547 @default.
- W3046820820 creator A5086305258 @default.
- W3046820820 creator A5087795864 @default.
- W3046820820 date "2020-10-01" @default.
- W3046820820 modified "2023-09-27" @default.
- W3046820820 title "Phenotypic and WGS-derived antimicrobial resistance profiles of clinical and non-clinical Acinetobacter baumannii isolates from Germany and Vietnam" @default.
- W3046820820 cites W157174520 @default.
- W3046820820 cites W1973714359 @default.
- W3046820820 cites W1999048696 @default.
- W3046820820 cites W2019269178 @default.
- W3046820820 cites W2022872727 @default.
- W3046820820 cites W2023625688 @default.
- W3046820820 cites W2024947920 @default.
- W3046820820 cites W203238601 @default.
- W3046820820 cites W2038379148 @default.
- W3046820820 cites W2047365652 @default.
- W3046820820 cites W2051221130 @default.
- W3046820820 cites W2058916766 @default.
- W3046820820 cites W2070945587 @default.
- W3046820820 cites W2094987562 @default.
- W3046820820 cites W2100695940 @default.
- W3046820820 cites W2107772251 @default.
- W3046820820 cites W2110991941 @default.
- W3046820820 cites W2115118328 @default.
- W3046820820 cites W2119888547 @default.
- W3046820820 cites W2120902911 @default.
- W3046820820 cites W2127576726 @default.
- W3046820820 cites W2135113667 @default.
- W3046820820 cites W2135922137 @default.
- W3046820820 cites W2142343447 @default.
- W3046820820 cites W2144010762 @default.
- W3046820820 cites W2144469570 @default.
- W3046820820 cites W2146157756 @default.
- W3046820820 cites W2146261867 @default.
- W3046820820 cites W2153969539 @default.
- W3046820820 cites W2160696489 @default.
- W3046820820 cites W2169007611 @default.
- W3046820820 cites W2169486567 @default.
- W3046820820 cites W2272875434 @default.
- W3046820820 cites W2340419086 @default.
- W3046820820 cites W2406387211 @default.
- W3046820820 cites W2432815617 @default.
- W3046820820 cites W2462622937 @default.
- W3046820820 cites W2544493586 @default.
- W3046820820 cites W2557183489 @default.
- W3046820820 cites W2562913889 @default.
- W3046820820 cites W2668645965 @default.
- W3046820820 cites W2727121475 @default.
- W3046820820 cites W2779019546 @default.
- W3046820820 cites W2795043613 @default.
- W3046820820 cites W2799419788 @default.
- W3046820820 cites W2885641223 @default.
- W3046820820 cites W2899160762 @default.
- W3046820820 cites W2900040946 @default.
- W3046820820 cites W2902332324 @default.
- W3046820820 cites W2906986246 @default.
- W3046820820 cites W2917367523 @default.
- W3046820820 cites W2966717055 @default.
- W3046820820 cites W2971037262 @default.
- W3046820820 cites W2980296480 @default.
- W3046820820 cites W2981452972 @default.
- W3046820820 cites W2990588292 @default.
- W3046820820 cites W2990618091 @default.
- W3046820820 cites W2990650744 @default.
- W3046820820 cites W3010187655 @default.
- W3046820820 cites W3013380353 @default.
- W3046820820 cites W4250496609 @default.
- W3046820820 cites W2025918715 @default.
- W3046820820 doi "https://doi.org/10.1016/j.ijantimicag.2020.106127" @default.
- W3046820820 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32750418" @default.
- W3046820820 hasPublicationYear "2020" @default.
- W3046820820 type Work @default.
- W3046820820 sameAs 3046820820 @default.
- W3046820820 citedByCount "15" @default.
- W3046820820 countsByYear W30468208202020 @default.
- W3046820820 countsByYear W30468208202021 @default.
- W3046820820 countsByYear W30468208202022 @default.
- W3046820820 countsByYear W30468208202023 @default.
- W3046820820 crossrefType "journal-article" @default.
- W3046820820 hasAuthorship W3046820820A5017761988 @default.
- W3046820820 hasAuthorship W3046820820A5019017859 @default.
- W3046820820 hasAuthorship W3046820820A5031249859 @default.
- W3046820820 hasAuthorship W3046820820A5031759637 @default.
- W3046820820 hasAuthorship W3046820820A5035844466 @default.
- W3046820820 hasAuthorship W3046820820A5045025427 @default.
- W3046820820 hasAuthorship W3046820820A5058098097 @default.
- W3046820820 hasAuthorship W3046820820A5065659547 @default.
- W3046820820 hasAuthorship W3046820820A5086305258 @default.
- W3046820820 hasAuthorship W3046820820A5087795864 @default.