Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046838067> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3046838067 endingPage "13" @default.
- W3046838067 startingPage "5" @default.
- W3046838067 abstract "Introduction. Quantum computers provide several times faster solutions to several NP-hard combinatorial optimization problems in comparison with computing clusters. The trend of doubling the number of qubits of quantum computers every year suggests the existence of an analog of Moore's law for quantum computers, which means that soon they will also be able to get a significant acceleration of solving many applied large-scale problems. The purpose of the article is to review methods for creating algorithms of quantum computer mathematics for combinatorial optimization problems and to analyze the influence of the qubit-to-qubit coupling and connections strength on the performance of quantum data processing. Results. The article offers approaches to the classification of algorithms for solving these problems from the perspective of quantum computer mathematics. It is shown that the number and strength of connections between qubits affect the dimensionality of problems solved by algorithms of quantum computer mathematics. It is proposed to consider two approaches to calculating combinatorial optimization problems on quantum computers: universal, using quantum gates, and specialized, based on a parameterization of physical processes. Examples of constructing a half-adder for two qubits of an IBM quantum processor and an example of solving the problem of finding the maximum independent set for the IBM and D-wave quantum computers are given. Conclusions. Today, quantum computers are available online through cloud services for research and commercial use. At present, quantum processors do not have enough qubits to replace semiconductor computers in universal computing. The search for a solution to a combinatorial optimization problem is performed by achieving the minimum energy of the system of coupled qubits, on which the task is mapped, and the data are the initial conditions. Approaches to solving combinatorial optimization problems on quantum computers are considered and the results of solving the problem of finding the maximum independent set on the IBM and D-wave quantum computers are given. Keywords: quantum computer, quantum computer mathematics, qubit, maximal independent set for a graph." @default.
- W3046838067 created "2020-08-07" @default.
- W3046838067 creator A5045997418 @default.
- W3046838067 creator A5087008950 @default.
- W3046838067 date "2020-07-24" @default.
- W3046838067 modified "2023-09-28" @default.
- W3046838067 title "Solving Combinatorial Optimization Problems on Quantum Computers" @default.
- W3046838067 cites W2949288109 @default.
- W3046838067 cites W4246565613 @default.
- W3046838067 doi "https://doi.org/10.34229/2707-451x.20.2.1" @default.
- W3046838067 hasPublicationYear "2020" @default.
- W3046838067 type Work @default.
- W3046838067 sameAs 3046838067 @default.
- W3046838067 citedByCount "3" @default.
- W3046838067 countsByYear W30468380672020 @default.
- W3046838067 countsByYear W30468380672023 @default.
- W3046838067 crossrefType "journal-article" @default.
- W3046838067 hasAuthorship W3046838067A5045997418 @default.
- W3046838067 hasAuthorship W3046838067A5087008950 @default.
- W3046838067 hasBestOaLocation W30468380671 @default.
- W3046838067 hasConcept C11413529 @default.
- W3046838067 hasConcept C121332964 @default.
- W3046838067 hasConcept C137019171 @default.
- W3046838067 hasConcept C137836250 @default.
- W3046838067 hasConcept C169699857 @default.
- W3046838067 hasConcept C186468114 @default.
- W3046838067 hasConcept C203087015 @default.
- W3046838067 hasConcept C41008148 @default.
- W3046838067 hasConcept C58053490 @default.
- W3046838067 hasConcept C62520636 @default.
- W3046838067 hasConcept C62641251 @default.
- W3046838067 hasConcept C80444323 @default.
- W3046838067 hasConcept C84114770 @default.
- W3046838067 hasConceptScore W3046838067C11413529 @default.
- W3046838067 hasConceptScore W3046838067C121332964 @default.
- W3046838067 hasConceptScore W3046838067C137019171 @default.
- W3046838067 hasConceptScore W3046838067C137836250 @default.
- W3046838067 hasConceptScore W3046838067C169699857 @default.
- W3046838067 hasConceptScore W3046838067C186468114 @default.
- W3046838067 hasConceptScore W3046838067C203087015 @default.
- W3046838067 hasConceptScore W3046838067C41008148 @default.
- W3046838067 hasConceptScore W3046838067C58053490 @default.
- W3046838067 hasConceptScore W3046838067C62520636 @default.
- W3046838067 hasConceptScore W3046838067C62641251 @default.
- W3046838067 hasConceptScore W3046838067C80444323 @default.
- W3046838067 hasConceptScore W3046838067C84114770 @default.
- W3046838067 hasIssue "2" @default.
- W3046838067 hasLocation W30468380671 @default.
- W3046838067 hasLocation W30468380672 @default.
- W3046838067 hasOpenAccess W3046838067 @default.
- W3046838067 hasPrimaryLocation W30468380671 @default.
- W3046838067 hasRelatedWork W2045780663 @default.
- W3046838067 hasRelatedWork W2051977071 @default.
- W3046838067 hasRelatedWork W2110690019 @default.
- W3046838067 hasRelatedWork W2120541011 @default.
- W3046838067 hasRelatedWork W2148576767 @default.
- W3046838067 hasRelatedWork W2766195849 @default.
- W3046838067 hasRelatedWork W2886620592 @default.
- W3046838067 hasRelatedWork W2910123824 @default.
- W3046838067 hasRelatedWork W2951211905 @default.
- W3046838067 hasRelatedWork W3193657745 @default.
- W3046838067 isParatext "false" @default.
- W3046838067 isRetracted "false" @default.
- W3046838067 magId "3046838067" @default.
- W3046838067 workType "article" @default.