Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046840704> ?p ?o ?g. }
- W3046840704 endingPage "117775" @default.
- W3046840704 startingPage "117775" @default.
- W3046840704 abstract "Modeling analyses were developed to evaluate near-road PM2.5 concentrations predicted by the AERMOD dispersion modeling chain under real-world conditions, and to assess the sensitivity of modeled near-road concentrations to the choice of dispersion model (AERMOD or CAL3QHCR), meteorological data, and travel data processing approach. We evaluate PM2.5 monitoring sites near major freeways in Indianapolis, Indiana (for 2016) and Providence, Rhode Island (for 2015–2016). The modeling analyses are built upon bottom-up estimates of temporally and spatially resolved roadway PM2.5 emissions based on traffic monitoring data and local vehicle fleet emission factors. The dispersion model simulations use local meteorological data collected at or close to the near-road monitoring sites. Predictions involved a modeling chain that included travel activity data processing, emissions modeling (MOVES and AP-42), and air quality dispersion modeling. We estimated the difference between PM2.5 concentrations at the near-road monitor and at nearby urban air quality monitoring sites (the measured near-road “increment”), and compared modeled results to the measured increments. Based on monitoring data, estimates of multi-day-averaged near-road PM2.5 increments were 0.9 ± 0.6 μg/m3 at Indianapolis and 1.4 ± 0.2 μg/m3 at Providence (where the uncertainty represents the 95% confidence interval on the mean value), and were comparable to measured PM2.5 increments at these sites in the near-road literature. Modeled roadway contributions to multi-day-averaged near-road concentrations substantially exceeded measured values based on the near-road monitoring data. The average near-road PM2.5 increment modeled with AERMOD was more than 300% (factor of four) larger than the measured increment at Indianapolis, and more than 500% (factor of six) larger than the measured increment at Providence. These biases reflect cumulative uncertainty throughout the near-road PM2.5 modeling chain. The emissions modeling component may have contributed to the modeling chain biases in two ways. First, the relative contribution of modeled non-exhaust emissions (PM2.5 brake wear, tire wear, and re-suspended road dust) compared to tailpipe exhaust emissions was higher than what has been documented in several published studies. Second, other research findings indicate that the U.S. EPA MOVES2014 model may over-predict tailpipe PM2.5 exhaust. The dispersion modeling component may have also contributed to the modeling chain biases. For example, when local meteorological data were used, AERMOD results were relatively insensitive to wind direction on a daily averaged basis; as a result, modeled concentrations exceeded measured values regardless of whether the near-road monitor was upwind or downwind of the roadway. In summary, this work provides a unique evaluation of PM2.5 concentrations predicted by the near-road modeling chain, and provides valuable information to understand potential sources of uncertainty in the near-road modeling process." @default.
- W3046840704 created "2020-08-07" @default.
- W3046840704 creator A5015319272 @default.
- W3046840704 creator A5041357702 @default.
- W3046840704 creator A5052269193 @default.
- W3046840704 creator A5060467257 @default.
- W3046840704 creator A5073553926 @default.
- W3046840704 creator A5076558631 @default.
- W3046840704 creator A5086724456 @default.
- W3046840704 creator A5088533960 @default.
- W3046840704 creator A5088536979 @default.
- W3046840704 date "2020-11-01" @default.
- W3046840704 modified "2023-09-26" @default.
- W3046840704 title "Modeled and measured near-road PM2.5 concentrations: Indianapolis and Providence cases" @default.
- W3046840704 cites W1630922896 @default.
- W3046840704 cites W1796066228 @default.
- W3046840704 cites W1967222642 @default.
- W3046840704 cites W1968753818 @default.
- W3046840704 cites W1977544346 @default.
- W3046840704 cites W1982451372 @default.
- W3046840704 cites W1985056102 @default.
- W3046840704 cites W1985615891 @default.
- W3046840704 cites W1993567692 @default.
- W3046840704 cites W2001417172 @default.
- W3046840704 cites W2007845192 @default.
- W3046840704 cites W2011069327 @default.
- W3046840704 cites W2022237285 @default.
- W3046840704 cites W2022966235 @default.
- W3046840704 cites W2035327145 @default.
- W3046840704 cites W2050973768 @default.
- W3046840704 cites W2052688095 @default.
- W3046840704 cites W2060828204 @default.
- W3046840704 cites W2068070519 @default.
- W3046840704 cites W2069741899 @default.
- W3046840704 cites W2078326551 @default.
- W3046840704 cites W2078732381 @default.
- W3046840704 cites W2082352821 @default.
- W3046840704 cites W2108895531 @default.
- W3046840704 cites W2109996489 @default.
- W3046840704 cites W2111700869 @default.
- W3046840704 cites W2114650750 @default.
- W3046840704 cites W2137570441 @default.
- W3046840704 cites W2148462529 @default.
- W3046840704 cites W2154849663 @default.
- W3046840704 cites W2163183520 @default.
- W3046840704 cites W2163213569 @default.
- W3046840704 cites W2164502673 @default.
- W3046840704 cites W2244768140 @default.
- W3046840704 cites W2292198465 @default.
- W3046840704 cites W2333669148 @default.
- W3046840704 cites W2469055532 @default.
- W3046840704 cites W2494901290 @default.
- W3046840704 cites W2515929755 @default.
- W3046840704 cites W2569727005 @default.
- W3046840704 cites W2618205314 @default.
- W3046840704 cites W2715632581 @default.
- W3046840704 cites W2765105153 @default.
- W3046840704 cites W2766002041 @default.
- W3046840704 cites W2768297095 @default.
- W3046840704 cites W2783330360 @default.
- W3046840704 cites W2791556143 @default.
- W3046840704 cites W2792960912 @default.
- W3046840704 cites W2796387726 @default.
- W3046840704 cites W2898560230 @default.
- W3046840704 cites W2904157408 @default.
- W3046840704 cites W2944135534 @default.
- W3046840704 doi "https://doi.org/10.1016/j.atmosenv.2020.117775" @default.
- W3046840704 hasPublicationYear "2020" @default.
- W3046840704 type Work @default.
- W3046840704 sameAs 3046840704 @default.
- W3046840704 citedByCount "3" @default.
- W3046840704 countsByYear W30468407042021 @default.
- W3046840704 countsByYear W30468407042023 @default.
- W3046840704 crossrefType "journal-article" @default.
- W3046840704 hasAuthorship W3046840704A5015319272 @default.
- W3046840704 hasAuthorship W3046840704A5041357702 @default.
- W3046840704 hasAuthorship W3046840704A5052269193 @default.
- W3046840704 hasAuthorship W3046840704A5060467257 @default.
- W3046840704 hasAuthorship W3046840704A5073553926 @default.
- W3046840704 hasAuthorship W3046840704A5076558631 @default.
- W3046840704 hasAuthorship W3046840704A5086724456 @default.
- W3046840704 hasAuthorship W3046840704A5088533960 @default.
- W3046840704 hasAuthorship W3046840704A5088536979 @default.
- W3046840704 hasBestOaLocation W30468407041 @default.
- W3046840704 hasConcept C120665830 @default.
- W3046840704 hasConcept C121332964 @default.
- W3046840704 hasConcept C126314574 @default.
- W3046840704 hasConcept C153294291 @default.
- W3046840704 hasConcept C177562468 @default.
- W3046840704 hasConcept C178790620 @default.
- W3046840704 hasConcept C185592680 @default.
- W3046840704 hasConcept C189764856 @default.
- W3046840704 hasConcept C205649164 @default.
- W3046840704 hasConcept C2778066673 @default.
- W3046840704 hasConcept C39432304 @default.
- W3046840704 hasConcept C559116025 @default.
- W3046840704 hasConceptScore W3046840704C120665830 @default.
- W3046840704 hasConceptScore W3046840704C121332964 @default.