Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046850395> ?p ?o ?g. }
- W3046850395 endingPage "4826" @default.
- W3046850395 startingPage "4810" @default.
- W3046850395 abstract "Purpose Spectral computed tomography (CT) is proposed by extending the conventional CT along the energy dimension. One newly implementation is to employ an energy‐discriminating photon counting detector (PCD), which can distinguish photon energy and divide a whole x‐ray spectrum into several energy bins with appropriate post‐processing steps. The state‐of‐the‐art PCD‐based spectral CT has superior energy resolution and material distinguishability, and it further has a great potential in both medical and industrial applications. To improve the reconstruction quality and decomposition accuracy, in this work, we propose an optimization‐based spectral CT reconstruction method with an innovational sparsity constraint. Methods We first employ a locally linear transform to the reconstructed channel images, and the structural similarity along the spectral dimension is effectively converted to a one‐dimensional (1D) gradient sparsity. Then, combining the prior knowledge of piecewise constant in the spatial domain (e.g., a two‐dimensional (2D) gradient sparsity feature), we unify both spectral and spatial dimensions and establish a joint three‐dimensional (3D) gradient sparsity. In addition, we use the ‐norm to measure the proposed sparsity and incorporate it as a smoothness constraint to concretize a general optimization framework. Furthermore, we develop the corresponding iterative algorithm to solve the optimization problem. Results Both visual results and quantitative indexes of numerical simulations and phantom experiments demonstrate the proposed method outperform the conventional filtered backprojection (FBP), total variation (TV), 2D L 0 ‐norm ( L 0 ), and TV with low rank (TVLR)‐based methods. From the image and ROI comparisons, we find the proposed method performs well in noise suppression, detail maintenance, and decomposition accuracy. However, the FBP suffers severe noise, the TV and L 0 are difficult to work consistently among different energy bins, and the TVLR fails to avoid gray value shift. The image quality assessments, such as peak signal‐to‐noise ratio (PSNR), normal mean absolute deviation (NMAD). and structural similarity (SSIM), also consistently indicate the proposed method can effectively removing noise and keeping fine structures in both channel‐wise reconstructions and material decompositions. Conclusions By employing a locally linear transform, the structural similarity among spectral channel images is converted to a 1D gradient sparsity and the gray value shift is effectively avoided when the difference measurement is minimized. The 3D L 0 ‐norm jointly and uniformly measures the gradient sparsity in both spectral and spatial dimensions. The cooperation of locally linear transform and 3D L 0 ‐norm well reinforces the global sparse features and keeps the correlation along spectral dimension without bringing gray‐value distortions. The corresponding constraint optimization model is fast and stably solved by using an alternative direction technique. Both numerical simulations and phantom experiments confirm the superior performance of the proposed method in noise suppression, structure maintenance, and accurate decomposition." @default.
- W3046850395 created "2020-08-07" @default.
- W3046850395 creator A5026032870 @default.
- W3046850395 creator A5046225712 @default.
- W3046850395 creator A5052662150 @default.
- W3046850395 creator A5075126167 @default.
- W3046850395 creator A5077824092 @default.
- W3046850395 date "2020-08-25" @default.
- W3046850395 modified "2023-09-26" @default.
- W3046850395 title "Locally linear transform based three‐dimensional gradient ‐norm minimization for spectral CT reconstruction" @default.
- W3046850395 cites W1559124628 @default.
- W3046850395 cites W1968142861 @default.
- W3046850395 cites W1968238516 @default.
- W3046850395 cites W1972037630 @default.
- W3046850395 cites W1972240851 @default.
- W3046850395 cites W1974125392 @default.
- W3046850395 cites W1981418870 @default.
- W3046850395 cites W1997642471 @default.
- W3046850395 cites W2006703379 @default.
- W3046850395 cites W2011425447 @default.
- W3046850395 cites W2015684438 @default.
- W3046850395 cites W2015767644 @default.
- W3046850395 cites W2017441482 @default.
- W3046850395 cites W2018125569 @default.
- W3046850395 cites W2033511209 @default.
- W3046850395 cites W2036321799 @default.
- W3046850395 cites W2051635575 @default.
- W3046850395 cites W2059360236 @default.
- W3046850395 cites W2061052400 @default.
- W3046850395 cites W2067847818 @default.
- W3046850395 cites W2068780335 @default.
- W3046850395 cites W2070404083 @default.
- W3046850395 cites W2072647673 @default.
- W3046850395 cites W2079949247 @default.
- W3046850395 cites W2080613051 @default.
- W3046850395 cites W2080799622 @default.
- W3046850395 cites W2086197330 @default.
- W3046850395 cites W2089626637 @default.
- W3046850395 cites W2091334405 @default.
- W3046850395 cites W2092702646 @default.
- W3046850395 cites W2094366314 @default.
- W3046850395 cites W2095447271 @default.
- W3046850395 cites W2102462918 @default.
- W3046850395 cites W2103559027 @default.
- W3046850395 cites W2108379706 @default.
- W3046850395 cites W2110594768 @default.
- W3046850395 cites W2114770744 @default.
- W3046850395 cites W2119820340 @default.
- W3046850395 cites W2125188192 @default.
- W3046850395 cites W2130879966 @default.
- W3046850395 cites W2133665775 @default.
- W3046850395 cites W2139655972 @default.
- W3046850395 cites W2154280873 @default.
- W3046850395 cites W2167307343 @default.
- W3046850395 cites W2168552825 @default.
- W3046850395 cites W2214358229 @default.
- W3046850395 cites W2255027576 @default.
- W3046850395 cites W2264926311 @default.
- W3046850395 cites W2300533347 @default.
- W3046850395 cites W2328610283 @default.
- W3046850395 cites W2336626738 @default.
- W3046850395 cites W2512266304 @default.
- W3046850395 cites W2539643339 @default.
- W3046850395 cites W2556227111 @default.
- W3046850395 cites W2599959373 @default.
- W3046850395 cites W2760169020 @default.
- W3046850395 cites W2795048155 @default.
- W3046850395 cites W2889741596 @default.
- W3046850395 cites W3101510409 @default.
- W3046850395 cites W4292101282 @default.
- W3046850395 doi "https://doi.org/10.1002/mp.14420" @default.
- W3046850395 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32740956" @default.
- W3046850395 hasPublicationYear "2020" @default.
- W3046850395 type Work @default.
- W3046850395 sameAs 3046850395 @default.
- W3046850395 citedByCount "3" @default.
- W3046850395 countsByYear W30468503952021 @default.
- W3046850395 countsByYear W30468503952022 @default.
- W3046850395 countsByYear W30468503952023 @default.
- W3046850395 crossrefType "journal-article" @default.
- W3046850395 hasAuthorship W3046850395A5026032870 @default.
- W3046850395 hasAuthorship W3046850395A5046225712 @default.
- W3046850395 hasAuthorship W3046850395A5052662150 @default.
- W3046850395 hasAuthorship W3046850395A5075126167 @default.
- W3046850395 hasAuthorship W3046850395A5077824092 @default.
- W3046850395 hasConcept C104293457 @default.
- W3046850395 hasConcept C105795698 @default.
- W3046850395 hasConcept C11413529 @default.
- W3046850395 hasConcept C120665830 @default.
- W3046850395 hasConcept C121332964 @default.
- W3046850395 hasConcept C126255220 @default.
- W3046850395 hasConcept C134306372 @default.
- W3046850395 hasConcept C141379421 @default.
- W3046850395 hasConcept C154945302 @default.
- W3046850395 hasConcept C164660894 @default.
- W3046850395 hasConcept C17744445 @default.
- W3046850395 hasConcept C186370098 @default.
- W3046850395 hasConcept C191795146 @default.