Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046896706> ?p ?o ?g. }
- W3046896706 endingPage "304" @default.
- W3046896706 startingPage "289" @default.
- W3046896706 abstract "Retrieval of vegetation properties from satellite and airborne optical data usually takes place after atmospheric correction, yet it is also possible to develop retrieval algorithms directly from top-of-atmosphere (TOA) radiance data. One of the key vegetation variables that can be retrieved from at-sensor TOA radiance data is leaf area index (LAI) if algorithms account for variability in atmosphere. We demonstrate the feasibility of LAI retrieval from Sentinel-2 (S2) TOA radiance data (L1C product) in a hybrid machine learning framework. To achieve this, the coupled leaf-canopy-atmosphere radiative transfer models PROSAIL-6SV were used to simulate a look-up table (LUT) of TOA radiance data and associated input variables. This LUT was then used to train the Bayesian machine learning algorithms Gaussian processes regression (GPR) and variational heteroscedastic GPR (VHGPR). PROSAIL simulations were also used to train GPR and VHGPR models for LAI retrieval from S2 images at bottom-of-atmosphere (BOA) level (L2A product) for comparison purposes. The BOA and TOA LAI products were consistently validated against a field dataset with GPR (R2 of 0.78) and with VHGPR (R2 of 0.80) and for both cases a slightly lower RMSE for the TOA LAI product (about 10% reduction). Because of delivering superior accuracies and lower uncertainties, the VHGPR models were further applied for LAI mapping using S2 acquisitions over the agricultural sites Marchfeld (Austria) and Barrax (Spain). The models led to consistent LAI maps at BOA and TOA scale. The LAI maps were also compared against LAI maps as generated by the SNAP toolbox, which is based on a neural network (NN). Maps were again consistent, however the SNAP NN model tends to overestimate over dense vegetation cover. Overall, this study demonstrated that hybrid LAI retrieval algorithms can be developed from TOA radiance data given a cloud-free sky, thus without the need of atmospheric correction. To the benefit of the community, the development of such hybrid models for the retrieval vegetation properties from BOA or TOA images has been streamlined in the freely downloadable ALG-ARTMO software framework." @default.
- W3046896706 created "2020-08-07" @default.
- W3046896706 creator A5003044369 @default.
- W3046896706 creator A5014167624 @default.
- W3046896706 creator A5039052506 @default.
- W3046896706 creator A5067699254 @default.
- W3046896706 creator A5069209351 @default.
- W3046896706 creator A5071174159 @default.
- W3046896706 creator A5072649258 @default.
- W3046896706 creator A5079448372 @default.
- W3046896706 creator A5086326440 @default.
- W3046896706 date "2020-09-01" @default.
- W3046896706 modified "2023-10-16" @default.
- W3046896706 title "Gaussian processes retrieval of LAI from Sentinel-2 top-of-atmosphere radiance data" @default.
- W3046896706 cites W1596717185 @default.
- W3046896706 cites W1674795780 @default.
- W3046896706 cites W1970664916 @default.
- W3046896706 cites W1978160572 @default.
- W3046896706 cites W1982600261 @default.
- W3046896706 cites W1986812364 @default.
- W3046896706 cites W1987607942 @default.
- W3046896706 cites W2002934707 @default.
- W3046896706 cites W2005034723 @default.
- W3046896706 cites W2007342648 @default.
- W3046896706 cites W2013061102 @default.
- W3046896706 cites W2013369959 @default.
- W3046896706 cites W2014094762 @default.
- W3046896706 cites W2018774679 @default.
- W3046896706 cites W2040125657 @default.
- W3046896706 cites W2041139590 @default.
- W3046896706 cites W2044076861 @default.
- W3046896706 cites W2051128904 @default.
- W3046896706 cites W2056435747 @default.
- W3046896706 cites W2065772955 @default.
- W3046896706 cites W2069674806 @default.
- W3046896706 cites W2081887174 @default.
- W3046896706 cites W2084778007 @default.
- W3046896706 cites W2103721688 @default.
- W3046896706 cites W2104166534 @default.
- W3046896706 cites W2108582080 @default.
- W3046896706 cites W2113865576 @default.
- W3046896706 cites W2115539456 @default.
- W3046896706 cites W2116922976 @default.
- W3046896706 cites W2117884339 @default.
- W3046896706 cites W2121025745 @default.
- W3046896706 cites W2125459444 @default.
- W3046896706 cites W2125763679 @default.
- W3046896706 cites W2129090471 @default.
- W3046896706 cites W2130670721 @default.
- W3046896706 cites W2131126673 @default.
- W3046896706 cites W2134346749 @default.
- W3046896706 cites W2150422670 @default.
- W3046896706 cites W2152164823 @default.
- W3046896706 cites W2157582727 @default.
- W3046896706 cites W2159454708 @default.
- W3046896706 cites W2160434086 @default.
- W3046896706 cites W2167881994 @default.
- W3046896706 cites W2188098015 @default.
- W3046896706 cites W221493477 @default.
- W3046896706 cites W2313861102 @default.
- W3046896706 cites W2404939661 @default.
- W3046896706 cites W2413379912 @default.
- W3046896706 cites W2420517413 @default.
- W3046896706 cites W2517171266 @default.
- W3046896706 cites W2531213996 @default.
- W3046896706 cites W2550113586 @default.
- W3046896706 cites W2597944323 @default.
- W3046896706 cites W2602266163 @default.
- W3046896706 cites W2622265626 @default.
- W3046896706 cites W2782772130 @default.
- W3046896706 cites W2793728001 @default.
- W3046896706 cites W2807884127 @default.
- W3046896706 cites W2808125284 @default.
- W3046896706 cites W2883026662 @default.
- W3046896706 cites W2883362252 @default.
- W3046896706 cites W2897788153 @default.
- W3046896706 cites W2898581940 @default.
- W3046896706 cites W2903772126 @default.
- W3046896706 cites W2915540904 @default.
- W3046896706 cites W2943316090 @default.
- W3046896706 cites W2946644377 @default.
- W3046896706 cites W2969754063 @default.
- W3046896706 cites W2980709514 @default.
- W3046896706 cites W2983376237 @default.
- W3046896706 cites W2983590566 @default.
- W3046896706 cites W3033126671 @default.
- W3046896706 cites W3100157715 @default.
- W3046896706 cites W4230118207 @default.
- W3046896706 cites W633320881 @default.
- W3046896706 doi "https://doi.org/10.1016/j.isprsjprs.2020.07.004" @default.
- W3046896706 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36082068" @default.
- W3046896706 hasPublicationYear "2020" @default.
- W3046896706 type Work @default.
- W3046896706 sameAs 3046896706 @default.
- W3046896706 citedByCount "35" @default.
- W3046896706 countsByYear W30468967062021 @default.
- W3046896706 countsByYear W30468967062022 @default.
- W3046896706 countsByYear W30468967062023 @default.