Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046946198> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W3046946198 abstract "Drowsiness affects people everyday life that leads to inefficient work or car accidents due to insomnia resulting damage to life and property. Especially, it can become worse when it happens to public transportation. As the author works in Department of Land Transport (DLT), drowsiness is a factor that causes car accident. Therefore, due to this concern, effective detection of drowsiness system is performed. The purpose of this paper is to develop Algorithm to analyze face structure from taking video media and detecting drowsiness. Also, the system is conducted to examine Algorithm's efficiency. The result shows that using facial landmarks can help to generate eyes and mouth component effectively, which can help to create equations to analyze drowsiness correctly by using Nvidia Nano Jetson. Nvidia Jetson Nano is a tool that accurately evaluates image by tracking closing eye motions more than 35 FPS or 1.5 seconds, and yawning or opening mouth motion more than 50 FPS equals to 2 seconds. It indicates the possibility of sleepiness which notifies to drivers. Thus, it is suggested that government should support the system and take to Thailand policy in order to reduce car accident from insomnia." @default.
- W3046946198 created "2020-08-10" @default.
- W3046946198 creator A5029897155 @default.
- W3046946198 creator A5064057242 @default.
- W3046946198 date "2020-06-01" @default.
- W3046946198 modified "2023-09-28" @default.
- W3046946198 title "Detection of Drowsiness from Facial Images in Real-Time Video Media using Nvidia Jetson Nano" @default.
- W3046946198 cites W1618056898 @default.
- W3046946198 cites W2887038627 @default.
- W3046946198 cites W2971913572 @default.
- W3046946198 doi "https://doi.org/10.1109/ecti-con49241.2020.9158235" @default.
- W3046946198 hasPublicationYear "2020" @default.
- W3046946198 type Work @default.
- W3046946198 sameAs 3046946198 @default.
- W3046946198 citedByCount "6" @default.
- W3046946198 countsByYear W30469461982021 @default.
- W3046946198 countsByYear W30469461982022 @default.
- W3046946198 countsByYear W30469461982023 @default.
- W3046946198 crossrefType "proceedings-article" @default.
- W3046946198 hasAuthorship W3046946198A5029897155 @default.
- W3046946198 hasAuthorship W3046946198A5064057242 @default.
- W3046946198 hasConcept C144024400 @default.
- W3046946198 hasConcept C154945302 @default.
- W3046946198 hasConcept C2779304628 @default.
- W3046946198 hasConcept C31972630 @default.
- W3046946198 hasConcept C36289849 @default.
- W3046946198 hasConcept C41008148 @default.
- W3046946198 hasConcept C44154836 @default.
- W3046946198 hasConceptScore W3046946198C144024400 @default.
- W3046946198 hasConceptScore W3046946198C154945302 @default.
- W3046946198 hasConceptScore W3046946198C2779304628 @default.
- W3046946198 hasConceptScore W3046946198C31972630 @default.
- W3046946198 hasConceptScore W3046946198C36289849 @default.
- W3046946198 hasConceptScore W3046946198C41008148 @default.
- W3046946198 hasConceptScore W3046946198C44154836 @default.
- W3046946198 hasLocation W30469461981 @default.
- W3046946198 hasOpenAccess W3046946198 @default.
- W3046946198 hasPrimaryLocation W30469461981 @default.
- W3046946198 hasRelatedWork W1899364738 @default.
- W3046946198 hasRelatedWork W2018638282 @default.
- W3046946198 hasRelatedWork W2103413230 @default.
- W3046946198 hasRelatedWork W2116300362 @default.
- W3046946198 hasRelatedWork W2138569648 @default.
- W3046946198 hasRelatedWork W2143020626 @default.
- W3046946198 hasRelatedWork W2663901905 @default.
- W3046946198 hasRelatedWork W2908959303 @default.
- W3046946198 hasRelatedWork W43171467 @default.
- W3046946198 hasRelatedWork W2126942212 @default.
- W3046946198 isParatext "false" @default.
- W3046946198 isRetracted "false" @default.
- W3046946198 magId "3046946198" @default.
- W3046946198 workType "article" @default.