Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046985004> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3046985004 abstract "In the literature, almost all optimization problems in NP-hard class are solved by meta-heuristics approach. However, this approach has the drawback of requiring tuning parameters for each different problem domain and different instances of the same problem. This approach is considered less effective in resolving these problems. Therefore, a new approach is needed, namely the hyper-heuristics approach that is able to solve cross-domain problems. Hyper-heuristic is one of the approximate search methods which is able to provide solutions to NP-hard problems in polynomial time, as well as giving fairly good and acceptable results. This method has two properties of search space, namely the selection of LLH and the acceptance of solutions (move acceptance). This approach works in barrier domains rather than directly working in problem domains. With these properties, hyper-heuristic is able to solve problems in different domains. In addition, hyper-heuristics has a learning mechanism through feedback from previously generated solutions. This final project tries to apply a hyperheuristic algorithm in six combinatorial optimization problem domains, namely SAT, Bin Packing, Flow Shop, Personnel Scheduling, TSP, and VRP. The method that will be used in this final project is Self Adaptive - Great Deluge (SAD-GED). The Self Adaptive mechanism is used to make LLH selection to be used, while the Great Deluge is used in determining the acceptance of solutions (move acceptance) in a hyperheuristic framework. The application of the SAD-GED algorithm is expected to be able to provide better results than the existing algorithm used previously, namely Simple Random - Simulated Annealing." @default.
- W3046985004 created "2020-08-10" @default.
- W3046985004 creator A5006446956 @default.
- W3046985004 creator A5030680906 @default.
- W3046985004 creator A5089801233 @default.
- W3046985004 date "2020-06-01" @default.
- W3046985004 modified "2023-09-26" @default.
- W3046985004 title "Self Adaptive Learning – Great Deluge Based Hyper-heuristics for Solving Cross Optimization Problem Domains" @default.
- W3046985004 cites W1814515812 @default.
- W3046985004 cites W1829921621 @default.
- W3046985004 cites W2003584395 @default.
- W3046985004 cites W2072441740 @default.
- W3046985004 cites W2104635975 @default.
- W3046985004 cites W2118044993 @default.
- W3046985004 cites W2184756760 @default.
- W3046985004 cites W2255042724 @default.
- W3046985004 cites W2331229340 @default.
- W3046985004 cites W2783585128 @default.
- W3046985004 cites W2909431247 @default.
- W3046985004 cites W2941465191 @default.
- W3046985004 cites W2978685305 @default.
- W3046985004 cites W2998168188 @default.
- W3046985004 doi "https://doi.org/10.1109/ecti-con49241.2020.9158209" @default.
- W3046985004 hasPublicationYear "2020" @default.
- W3046985004 type Work @default.
- W3046985004 sameAs 3046985004 @default.
- W3046985004 citedByCount "0" @default.
- W3046985004 crossrefType "proceedings-article" @default.
- W3046985004 hasAuthorship W3046985004A5006446956 @default.
- W3046985004 hasAuthorship W3046985004A5030680906 @default.
- W3046985004 hasAuthorship W3046985004A5089801233 @default.
- W3046985004 hasConcept C11413529 @default.
- W3046985004 hasConcept C126255220 @default.
- W3046985004 hasConcept C127705205 @default.
- W3046985004 hasConcept C134306372 @default.
- W3046985004 hasConcept C137836250 @default.
- W3046985004 hasConcept C154945302 @default.
- W3046985004 hasConcept C156273044 @default.
- W3046985004 hasConcept C173801870 @default.
- W3046985004 hasConcept C33923547 @default.
- W3046985004 hasConcept C36503486 @default.
- W3046985004 hasConcept C41008148 @default.
- W3046985004 hasConcept C52692508 @default.
- W3046985004 hasConcept C81917197 @default.
- W3046985004 hasConcept C87219788 @default.
- W3046985004 hasConceptScore W3046985004C11413529 @default.
- W3046985004 hasConceptScore W3046985004C126255220 @default.
- W3046985004 hasConceptScore W3046985004C127705205 @default.
- W3046985004 hasConceptScore W3046985004C134306372 @default.
- W3046985004 hasConceptScore W3046985004C137836250 @default.
- W3046985004 hasConceptScore W3046985004C154945302 @default.
- W3046985004 hasConceptScore W3046985004C156273044 @default.
- W3046985004 hasConceptScore W3046985004C173801870 @default.
- W3046985004 hasConceptScore W3046985004C33923547 @default.
- W3046985004 hasConceptScore W3046985004C36503486 @default.
- W3046985004 hasConceptScore W3046985004C41008148 @default.
- W3046985004 hasConceptScore W3046985004C52692508 @default.
- W3046985004 hasConceptScore W3046985004C81917197 @default.
- W3046985004 hasConceptScore W3046985004C87219788 @default.
- W3046985004 hasLocation W30469850041 @default.
- W3046985004 hasOpenAccess W3046985004 @default.
- W3046985004 hasPrimaryLocation W30469850041 @default.
- W3046985004 hasRelatedWork W11904183 @default.
- W3046985004 hasRelatedWork W1198659 @default.
- W3046985004 hasRelatedWork W1500476 @default.
- W3046985004 hasRelatedWork W2203340 @default.
- W3046985004 hasRelatedWork W3477245 @default.
- W3046985004 hasRelatedWork W348601 @default.
- W3046985004 hasRelatedWork W7000807 @default.
- W3046985004 hasRelatedWork W7662528 @default.
- W3046985004 hasRelatedWork W8040082 @default.
- W3046985004 hasRelatedWork W8060374 @default.
- W3046985004 isParatext "false" @default.
- W3046985004 isRetracted "false" @default.
- W3046985004 magId "3046985004" @default.
- W3046985004 workType "article" @default.