Matches in SemOpenAlex for { <https://semopenalex.org/work/W3046998562> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3046998562 endingPage "115600" @default.
- W3046998562 startingPage "115600" @default.
- W3046998562 abstract "Abstract Compared with traditional deterministic load forecasting, probabilistic load forecasting (PLF) help us understand the potential risks in the power system operation by providing more information about future uncertainties of the loads. Quantile forecasting, as a kind of non-parametric probabilistic forecasting method, has been well developed and widely used in PLF. However, the results of quantile forecasts are discrete, which contain fewer details than density forecasts which provide the most comprehensive information. This paper proposes a novel day-ahead load probability density forecasting method by transforming and combining multiple quantile forecasts. The proposed method includes two main steps: transformation and combination. In the first step, the kernel density estimation method is used to transform the individual quantile forecast into the probability density curve; in the second step, an optimization problem is established to obtain the weighted combination of different probability density forecasts. The perturbation search method is applied to determine the optimal weight of each individual forecast. We demonstrate the effectiveness and superiority of our proposed method using comprehensive case studies on the real-world load data from Guangdong province in China, ISO New England (ISO-NE) in the US and Irish smart meter data. Case studies show that the combined model is robust to kernel function selection in the transformation step and has better forecasting performance. Compared with the best individual model, the purposed combined model has an accuracy improvement of 1.54% in the Guangdong dataset and 2.9% in the ISO-NE dataset in terms of the continuous ranked probability score. The proposed combination forecasting method can be robust in high volatility scenarios." @default.
- W3046998562 created "2020-08-10" @default.
- W3046998562 creator A5054418515 @default.
- W3046998562 creator A5058380236 @default.
- W3046998562 creator A5064553269 @default.
- W3046998562 creator A5083565383 @default.
- W3046998562 creator A5084939652 @default.
- W3046998562 date "2020-11-01" @default.
- W3046998562 modified "2023-10-01" @default.
- W3046998562 title "Load probability density forecasting by transforming and combining quantile forecasts" @default.
- W3046998562 cites W1967460951 @default.
- W3046998562 cites W1981780459 @default.
- W3046998562 cites W1995384329 @default.
- W3046998562 cites W2014268383 @default.
- W3046998562 cites W2025654914 @default.
- W3046998562 cites W2025720061 @default.
- W3046998562 cites W2069486555 @default.
- W3046998562 cites W2118020555 @default.
- W3046998562 cites W2144268297 @default.
- W3046998562 cites W2275088575 @default.
- W3046998562 cites W2281236923 @default.
- W3046998562 cites W2286305802 @default.
- W3046998562 cites W2296521892 @default.
- W3046998562 cites W2327401273 @default.
- W3046998562 cites W2343702657 @default.
- W3046998562 cites W2346662913 @default.
- W3046998562 cites W2511713529 @default.
- W3046998562 cites W2554462191 @default.
- W3046998562 cites W2622052728 @default.
- W3046998562 cites W2768001493 @default.
- W3046998562 cites W2793415686 @default.
- W3046998562 cites W2796318045 @default.
- W3046998562 cites W2799310842 @default.
- W3046998562 cites W2884414452 @default.
- W3046998562 cites W2888584141 @default.
- W3046998562 cites W2898330284 @default.
- W3046998562 cites W2899494475 @default.
- W3046998562 cites W2951882118 @default.
- W3046998562 cites W2963188571 @default.
- W3046998562 cites W4244193996 @default.
- W3046998562 doi "https://doi.org/10.1016/j.apenergy.2020.115600" @default.
- W3046998562 hasPublicationYear "2020" @default.
- W3046998562 type Work @default.
- W3046998562 sameAs 3046998562 @default.
- W3046998562 citedByCount "37" @default.
- W3046998562 countsByYear W30469985622020 @default.
- W3046998562 countsByYear W30469985622021 @default.
- W3046998562 countsByYear W30469985622022 @default.
- W3046998562 countsByYear W30469985622023 @default.
- W3046998562 crossrefType "journal-article" @default.
- W3046998562 hasAuthorship W3046998562A5054418515 @default.
- W3046998562 hasAuthorship W3046998562A5058380236 @default.
- W3046998562 hasAuthorship W3046998562A5064553269 @default.
- W3046998562 hasAuthorship W3046998562A5083565383 @default.
- W3046998562 hasAuthorship W3046998562A5084939652 @default.
- W3046998562 hasBestOaLocation W30469985621 @default.
- W3046998562 hasConcept C105795698 @default.
- W3046998562 hasConcept C118671147 @default.
- W3046998562 hasConcept C120954023 @default.
- W3046998562 hasConcept C122282355 @default.
- W3046998562 hasConcept C149782125 @default.
- W3046998562 hasConcept C162324750 @default.
- W3046998562 hasConcept C33923547 @default.
- W3046998562 hasConcept C39432304 @default.
- W3046998562 hasConcept C49937458 @default.
- W3046998562 hasConceptScore W3046998562C105795698 @default.
- W3046998562 hasConceptScore W3046998562C118671147 @default.
- W3046998562 hasConceptScore W3046998562C120954023 @default.
- W3046998562 hasConceptScore W3046998562C122282355 @default.
- W3046998562 hasConceptScore W3046998562C149782125 @default.
- W3046998562 hasConceptScore W3046998562C162324750 @default.
- W3046998562 hasConceptScore W3046998562C33923547 @default.
- W3046998562 hasConceptScore W3046998562C39432304 @default.
- W3046998562 hasConceptScore W3046998562C49937458 @default.
- W3046998562 hasFunder F4320321001 @default.
- W3046998562 hasLocation W30469985621 @default.
- W3046998562 hasLocation W30469985622 @default.
- W3046998562 hasOpenAccess W3046998562 @default.
- W3046998562 hasPrimaryLocation W30469985621 @default.
- W3046998562 hasRelatedWork W1505033075 @default.
- W3046998562 hasRelatedWork W1757461682 @default.
- W3046998562 hasRelatedWork W2766228243 @default.
- W3046998562 hasRelatedWork W2903794378 @default.
- W3046998562 hasRelatedWork W3036627630 @default.
- W3046998562 hasRelatedWork W3123551103 @default.
- W3046998562 hasRelatedWork W3124349228 @default.
- W3046998562 hasRelatedWork W3135104130 @default.
- W3046998562 hasRelatedWork W4200167157 @default.
- W3046998562 hasRelatedWork W4229053758 @default.
- W3046998562 hasVolume "277" @default.
- W3046998562 isParatext "false" @default.
- W3046998562 isRetracted "false" @default.
- W3046998562 magId "3046998562" @default.
- W3046998562 workType "article" @default.