Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047032717> ?p ?o ?g. }
- W3047032717 endingPage "456" @default.
- W3047032717 startingPage "449" @default.
- W3047032717 abstract "Abstract Objective: To propose malnutrition screening methods for the elderly population using predictive multivariate models. Due to the greater risk of nutrition deficiencies in ageing populations, nutritional assessment of the elderly is necessary in primary health care. Design: This was a cross-sectional study. Multivariate models were obtained by means of discriminant analysis and binary logistic regression. The diagnostic accuracy of each multivariate model was determined and compared with the Chang method based on receiver operating characteristic curves. The optimal cut-point, sensitivity, specificity and Youden index were estimated for each of the models. Setting: The province of Cordoba, Spain. Participants: Two hundred fifty-five patients over the age of 65 years from three health centres and three nursing homes. Results: Fourteen models for predicting risk of malnutrition were obtained, six by discriminant multivariate analysis and eight by binary logistic regression. Sensitivity ranged from 55·6 to 93·1 % and specificity from 64·9 to 94 %. The maximum and minimum Youden indexes were 0·77 and 0·49, respectively. We finally selected a model which does not require a blood test. Conclusions: The proposed models simplify nutritional assessment in the elderly and, except for number 2 of those calculated by binary logistic regression, have better diagnostic accuracy than the Spanish version of the Mini Nutritional Assessment screening tool. The selected model, whose validation is necessary for the future with other different samples, provides good diagnostic accuracy, and it can be performed by non-medical personnel, making it an accessible, easy and rapid tool in daily clinical practice." @default.
- W3047032717 created "2020-08-10" @default.
- W3047032717 creator A5007973735 @default.
- W3047032717 creator A5050259915 @default.
- W3047032717 creator A5056274186 @default.
- W3047032717 creator A5059293472 @default.
- W3047032717 creator A5060259526 @default.
- W3047032717 creator A5089477479 @default.
- W3047032717 date "2020-08-05" @default.
- W3047032717 modified "2023-09-27" @default.
- W3047032717 title "Development of predictive models for nutritional assessment in the elderly" @default.
- W3047032717 cites W1542767583 @default.
- W3047032717 cites W1637546292 @default.
- W3047032717 cites W1906109002 @default.
- W3047032717 cites W1928127519 @default.
- W3047032717 cites W2011769683 @default.
- W3047032717 cites W2027210258 @default.
- W3047032717 cites W2029189222 @default.
- W3047032717 cites W2053758818 @default.
- W3047032717 cites W2082755106 @default.
- W3047032717 cites W2083797416 @default.
- W3047032717 cites W2090133345 @default.
- W3047032717 cites W2095269801 @default.
- W3047032717 cites W2096169676 @default.
- W3047032717 cites W2108726155 @default.
- W3047032717 cites W2128529067 @default.
- W3047032717 cites W2143539073 @default.
- W3047032717 cites W2177024301 @default.
- W3047032717 cites W2200068444 @default.
- W3047032717 cites W2241959218 @default.
- W3047032717 cites W2387995273 @default.
- W3047032717 cites W247026183 @default.
- W3047032717 cites W2531133502 @default.
- W3047032717 cites W2593642811 @default.
- W3047032717 cites W2595891292 @default.
- W3047032717 cites W2745090989 @default.
- W3047032717 cites W2768689142 @default.
- W3047032717 cites W2794315840 @default.
- W3047032717 cites W2806853649 @default.
- W3047032717 cites W2886959382 @default.
- W3047032717 cites W2920265483 @default.
- W3047032717 doi "https://doi.org/10.1017/s1368980020002153" @default.
- W3047032717 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32753089" @default.
- W3047032717 hasPublicationYear "2020" @default.
- W3047032717 type Work @default.
- W3047032717 sameAs 3047032717 @default.
- W3047032717 citedByCount "1" @default.
- W3047032717 countsByYear W30470327172022 @default.
- W3047032717 crossrefType "journal-article" @default.
- W3047032717 hasAuthorship W3047032717A5007973735 @default.
- W3047032717 hasAuthorship W3047032717A5050259915 @default.
- W3047032717 hasAuthorship W3047032717A5056274186 @default.
- W3047032717 hasAuthorship W3047032717A5059293472 @default.
- W3047032717 hasAuthorship W3047032717A5060259526 @default.
- W3047032717 hasAuthorship W3047032717A5089477479 @default.
- W3047032717 hasBestOaLocation W30470327172 @default.
- W3047032717 hasConcept C105795698 @default.
- W3047032717 hasConcept C126322002 @default.
- W3047032717 hasConcept C151956035 @default.
- W3047032717 hasConcept C152877465 @default.
- W3047032717 hasConcept C161584116 @default.
- W3047032717 hasConcept C2908647359 @default.
- W3047032717 hasConcept C33923547 @default.
- W3047032717 hasConcept C38180746 @default.
- W3047032717 hasConcept C43346845 @default.
- W3047032717 hasConcept C551997983 @default.
- W3047032717 hasConcept C58471807 @default.
- W3047032717 hasConcept C69738355 @default.
- W3047032717 hasConcept C71924100 @default.
- W3047032717 hasConcept C99454951 @default.
- W3047032717 hasConceptScore W3047032717C105795698 @default.
- W3047032717 hasConceptScore W3047032717C126322002 @default.
- W3047032717 hasConceptScore W3047032717C151956035 @default.
- W3047032717 hasConceptScore W3047032717C152877465 @default.
- W3047032717 hasConceptScore W3047032717C161584116 @default.
- W3047032717 hasConceptScore W3047032717C2908647359 @default.
- W3047032717 hasConceptScore W3047032717C33923547 @default.
- W3047032717 hasConceptScore W3047032717C38180746 @default.
- W3047032717 hasConceptScore W3047032717C43346845 @default.
- W3047032717 hasConceptScore W3047032717C551997983 @default.
- W3047032717 hasConceptScore W3047032717C58471807 @default.
- W3047032717 hasConceptScore W3047032717C69738355 @default.
- W3047032717 hasConceptScore W3047032717C71924100 @default.
- W3047032717 hasConceptScore W3047032717C99454951 @default.
- W3047032717 hasIssue "3" @default.
- W3047032717 hasLocation W30470327171 @default.
- W3047032717 hasLocation W30470327172 @default.
- W3047032717 hasLocation W30470327173 @default.
- W3047032717 hasOpenAccess W3047032717 @default.
- W3047032717 hasPrimaryLocation W30470327171 @default.
- W3047032717 hasRelatedWork W2089073504 @default.
- W3047032717 hasRelatedWork W2117787183 @default.
- W3047032717 hasRelatedWork W2157758999 @default.
- W3047032717 hasRelatedWork W2289436160 @default.
- W3047032717 hasRelatedWork W2347937125 @default.
- W3047032717 hasRelatedWork W2981095150 @default.
- W3047032717 hasRelatedWork W3039480810 @default.
- W3047032717 hasRelatedWork W3047032717 @default.