Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047040425> ?p ?o ?g. }
- W3047040425 endingPage "e16709" @default.
- W3047040425 startingPage "e16709" @default.
- W3047040425 abstract "Background Chest computed tomography (CT) is crucial for the detection of lung cancer, and many automated CT evaluation methods have been proposed. Due to the divergent software dependencies of the reported approaches, the developed methods are rarely compared or reproduced. Objective The goal of the research was to generate reproducible machine learning modules for lung cancer detection and compare the approaches and performances of the award-winning algorithms developed in the Kaggle Data Science Bowl. Methods We obtained the source codes of all award-winning solutions of the Kaggle Data Science Bowl Challenge, where participants developed automated CT evaluation methods to detect lung cancer (training set n=1397, public test set n=198, final test set n=506). The performance of the algorithms was evaluated by the log-loss function, and the Spearman correlation coefficient of the performance in the public and final test sets was computed. Results Most solutions implemented distinct image preprocessing, segmentation, and classification modules. Variants of U-Net, VGGNet, and residual net were commonly used in nodule segmentation, and transfer learning was used in most of the classification algorithms. Substantial performance variations in the public and final test sets were observed (Spearman correlation coefficient = .39 among the top 10 teams). To ensure the reproducibility of results, we generated a Docker container for each of the top solutions. Conclusions We compared the award-winning algorithms for lung cancer detection and generated reproducible Docker images for the top solutions. Although convolutional neural networks achieved decent accuracy, there is plenty of room for improvement regarding model generalizability." @default.
- W3047040425 created "2020-08-10" @default.
- W3047040425 creator A5004268054 @default.
- W3047040425 creator A5029052971 @default.
- W3047040425 creator A5031848640 @default.
- W3047040425 creator A5036268166 @default.
- W3047040425 creator A5062802526 @default.
- W3047040425 creator A5069267668 @default.
- W3047040425 creator A5088509061 @default.
- W3047040425 date "2020-08-05" @default.
- W3047040425 modified "2023-10-12" @default.
- W3047040425 title "Reproducible Machine Learning Methods for Lung Cancer Detection Using Computed Tomography Images: Algorithm Development and Validation" @default.
- W3047040425 cites W1213336605 @default.
- W3047040425 cites W130099911 @default.
- W3047040425 cites W1574680346 @default.
- W3047040425 cites W1986649315 @default.
- W3047040425 cites W2008009595 @default.
- W3047040425 cites W2023385105 @default.
- W3047040425 cites W2048561164 @default.
- W3047040425 cites W2049013464 @default.
- W3047040425 cites W2085652537 @default.
- W3047040425 cites W2117539524 @default.
- W3047040425 cites W2139277921 @default.
- W3047040425 cites W2141619730 @default.
- W3047040425 cites W2166712565 @default.
- W3047040425 cites W2194775991 @default.
- W3047040425 cites W2253429366 @default.
- W3047040425 cites W2514628397 @default.
- W3047040425 cites W2561512519 @default.
- W3047040425 cites W2584017349 @default.
- W3047040425 cites W2754535502 @default.
- W3047040425 cites W2769322745 @default.
- W3047040425 cites W2793954249 @default.
- W3047040425 cites W2802087177 @default.
- W3047040425 cites W2884787091 @default.
- W3047040425 cites W2887808321 @default.
- W3047040425 cites W2889646458 @default.
- W3047040425 cites W2895083984 @default.
- W3047040425 cites W2895763047 @default.
- W3047040425 cites W2897821359 @default.
- W3047040425 cites W2917837889 @default.
- W3047040425 cites W3023087441 @default.
- W3047040425 doi "https://doi.org/10.2196/16709" @default.
- W3047040425 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7439139" @default.
- W3047040425 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32755895" @default.
- W3047040425 hasPublicationYear "2020" @default.
- W3047040425 type Work @default.
- W3047040425 sameAs 3047040425 @default.
- W3047040425 citedByCount "33" @default.
- W3047040425 countsByYear W30470404252020 @default.
- W3047040425 countsByYear W30470404252021 @default.
- W3047040425 countsByYear W30470404252022 @default.
- W3047040425 countsByYear W30470404252023 @default.
- W3047040425 crossrefType "journal-article" @default.
- W3047040425 hasAuthorship W3047040425A5004268054 @default.
- W3047040425 hasAuthorship W3047040425A5029052971 @default.
- W3047040425 hasAuthorship W3047040425A5031848640 @default.
- W3047040425 hasAuthorship W3047040425A5036268166 @default.
- W3047040425 hasAuthorship W3047040425A5062802526 @default.
- W3047040425 hasAuthorship W3047040425A5069267668 @default.
- W3047040425 hasAuthorship W3047040425A5088509061 @default.
- W3047040425 hasBestOaLocation W30470404251 @default.
- W3047040425 hasConcept C105795698 @default.
- W3047040425 hasConcept C11413529 @default.
- W3047040425 hasConcept C119857082 @default.
- W3047040425 hasConcept C124101348 @default.
- W3047040425 hasConcept C124504099 @default.
- W3047040425 hasConcept C142724271 @default.
- W3047040425 hasConcept C154945302 @default.
- W3047040425 hasConcept C159744936 @default.
- W3047040425 hasConcept C169903167 @default.
- W3047040425 hasConcept C2776256026 @default.
- W3047040425 hasConcept C2777405583 @default.
- W3047040425 hasConcept C33923547 @default.
- W3047040425 hasConcept C34736171 @default.
- W3047040425 hasConcept C41008148 @default.
- W3047040425 hasConcept C55078378 @default.
- W3047040425 hasConcept C58489278 @default.
- W3047040425 hasConcept C71924100 @default.
- W3047040425 hasConcept C81363708 @default.
- W3047040425 hasConcept C89600930 @default.
- W3047040425 hasConceptScore W3047040425C105795698 @default.
- W3047040425 hasConceptScore W3047040425C11413529 @default.
- W3047040425 hasConceptScore W3047040425C119857082 @default.
- W3047040425 hasConceptScore W3047040425C124101348 @default.
- W3047040425 hasConceptScore W3047040425C124504099 @default.
- W3047040425 hasConceptScore W3047040425C142724271 @default.
- W3047040425 hasConceptScore W3047040425C154945302 @default.
- W3047040425 hasConceptScore W3047040425C159744936 @default.
- W3047040425 hasConceptScore W3047040425C169903167 @default.
- W3047040425 hasConceptScore W3047040425C2776256026 @default.
- W3047040425 hasConceptScore W3047040425C2777405583 @default.
- W3047040425 hasConceptScore W3047040425C33923547 @default.
- W3047040425 hasConceptScore W3047040425C34736171 @default.
- W3047040425 hasConceptScore W3047040425C41008148 @default.
- W3047040425 hasConceptScore W3047040425C55078378 @default.
- W3047040425 hasConceptScore W3047040425C58489278 @default.
- W3047040425 hasConceptScore W3047040425C71924100 @default.