Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047148624> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3047148624 endingPage "184" @default.
- W3047148624 startingPage "184" @default.
- W3047148624 abstract "ntroduction:Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor contained images. These precise techniques open up the way for recognizing a tumor even in the early stages of cancer development depicted as very low contrast object in an image. To this end, at first a set of similarity measures are calculated for each pixel in the image database. Then, this dataset is fed into a classifier that defines the mathematical rules necessary for making decision about a new image. After defining the rules, a model is formed which is ready to make decisions for new images outside the database. This decision is accompanied with an accuracy which is calculated in the end as the classifier performance measures.Materials and Methods: In this study, Singular Value Decomposition – SVD – method is used as a tool to extract similarity measures for each malignant image in the database. These measures form a matrix with which the classifier is trained. The classifier in this study, is a model based on Hidden Markov Random Field – HMRF – idea, that utilizes Bayes’ rule and maximum a posteriori criterion to obtain labels for each pixel and making decisions about he new images respectively. After sorting the new image as either malignant or not, the malignant image goes through a wavelet process for tumor segmentation. In this section, the image is transformed into a multilevel wavelet structure. Image segmentation is done using direct and inverse wavelet transform.Results: The classification performance is done quantitatively and qualitatively by calculating Volume Overlap Ratio (VOR), Recognition Rate (RR), True Negative Rate (TNR), True Positive Rate (TPR), Accuracy (ACC), Sensitivity and Specificity parameters, and 5 output images respectively. Also, a qualitative comparison is made between MRF, HMRF and morphological image segmentation methods.Conclusion: The application of HMRF-Wavelet pattern recognition has been investigated in this work. VOR, RR, TNR, TPR, ACC, Sensitivity and Specificity are calculated, and most values have been reported as over 95% for five test images. Despite the complexity of the HMRF statistical modeling, acceptable performance measure values indicate the sufficiency of this algorithm." @default.
- W3047148624 created "2020-08-10" @default.
- W3047148624 creator A5004041223 @default.
- W3047148624 creator A5030187542 @default.
- W3047148624 creator A5038194448 @default.
- W3047148624 creator A5077958106 @default.
- W3047148624 creator A5081308121 @default.
- W3047148624 date "2018-12-01" @default.
- W3047148624 modified "2023-09-23" @default.
- W3047148624 title "Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images" @default.
- W3047148624 doi "https://doi.org/10.22038/ijmp.2018.12797" @default.
- W3047148624 hasPublicationYear "2018" @default.
- W3047148624 type Work @default.
- W3047148624 sameAs 3047148624 @default.
- W3047148624 citedByCount "0" @default.
- W3047148624 crossrefType "journal-article" @default.
- W3047148624 hasAuthorship W3047148624A5004041223 @default.
- W3047148624 hasAuthorship W3047148624A5030187542 @default.
- W3047148624 hasAuthorship W3047148624A5038194448 @default.
- W3047148624 hasAuthorship W3047148624A5077958106 @default.
- W3047148624 hasAuthorship W3047148624A5081308121 @default.
- W3047148624 hasConcept C12267149 @default.
- W3047148624 hasConcept C124504099 @default.
- W3047148624 hasConcept C153180895 @default.
- W3047148624 hasConcept C154945302 @default.
- W3047148624 hasConcept C160633673 @default.
- W3047148624 hasConcept C22789450 @default.
- W3047148624 hasConcept C2778045648 @default.
- W3047148624 hasConcept C41008148 @default.
- W3047148624 hasConcept C52001869 @default.
- W3047148624 hasConcept C52622490 @default.
- W3047148624 hasConcept C89600930 @default.
- W3047148624 hasConcept C95623464 @default.
- W3047148624 hasConceptScore W3047148624C12267149 @default.
- W3047148624 hasConceptScore W3047148624C124504099 @default.
- W3047148624 hasConceptScore W3047148624C153180895 @default.
- W3047148624 hasConceptScore W3047148624C154945302 @default.
- W3047148624 hasConceptScore W3047148624C160633673 @default.
- W3047148624 hasConceptScore W3047148624C22789450 @default.
- W3047148624 hasConceptScore W3047148624C2778045648 @default.
- W3047148624 hasConceptScore W3047148624C41008148 @default.
- W3047148624 hasConceptScore W3047148624C52001869 @default.
- W3047148624 hasConceptScore W3047148624C52622490 @default.
- W3047148624 hasConceptScore W3047148624C89600930 @default.
- W3047148624 hasConceptScore W3047148624C95623464 @default.
- W3047148624 hasLocation W30471486241 @default.
- W3047148624 hasOpenAccess W3047148624 @default.
- W3047148624 hasPrimaryLocation W30471486241 @default.
- W3047148624 hasRelatedWork W1840222372 @default.
- W3047148624 hasRelatedWork W2028989666 @default.
- W3047148624 hasRelatedWork W2032333963 @default.
- W3047148624 hasRelatedWork W2068098889 @default.
- W3047148624 hasRelatedWork W2086242093 @default.
- W3047148624 hasRelatedWork W2162207417 @default.
- W3047148624 hasRelatedWork W2605839632 @default.
- W3047148624 hasRelatedWork W2757335733 @default.
- W3047148624 hasRelatedWork W2770988926 @default.
- W3047148624 hasRelatedWork W2797000728 @default.
- W3047148624 hasRelatedWork W2810351481 @default.
- W3047148624 hasRelatedWork W2899109189 @default.
- W3047148624 hasRelatedWork W2922345380 @default.
- W3047148624 hasRelatedWork W2946616172 @default.
- W3047148624 hasRelatedWork W3002769598 @default.
- W3047148624 hasRelatedWork W3033570016 @default.
- W3047148624 hasRelatedWork W3047248476 @default.
- W3047148624 hasRelatedWork W3119922216 @default.
- W3047148624 hasRelatedWork W3169741450 @default.
- W3047148624 hasRelatedWork W2209824110 @default.
- W3047148624 hasVolume "15" @default.
- W3047148624 isParatext "false" @default.
- W3047148624 isRetracted "false" @default.
- W3047148624 magId "3047148624" @default.
- W3047148624 workType "article" @default.