Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047185276> ?p ?o ?g. }
- W3047185276 endingPage "107109" @default.
- W3047185276 startingPage "107109" @default.
- W3047185276 abstract "Hidden Markov models (HMMs) have been widely used for anomaly and change point detection due to their representation power and computational efficiency in capturing statistical dependencies in time series. However, often information is integrated over relatively long observation windows, with detections made when the observed sequence’s likelihood under the (null) HMM deviates significantly from its typical range. Three related limitations are: i) use of long windows entails large decision delay, which may e.g. fail to prevent machine failure/damage; ii) typical approaches do not narrowly identify an interval within which the change point occurred. Such information could be useful e.g. for process control, where one wants to know how long it takes for control inputs to induce desired change points; iii) The decision statistic is usually the likelihood of the data in the current window, without consideration of past observations. This is suboptimal – this likelihood should be conditioned on past observations to optimally account for statistical dependency in the time series. In this paper, we propose a framework for change point detection which overcomes all of these limitations: i) it applies a standard HMM Forward recursion, but used to evaluate the likelihood of an observation subsequence conditioned on the subsequence’s entire past. This approach is used to efficiently evaluate the conditional likelihoods of all intervals of fixed length (hence with fixed delay, d), until a change point is first detected. Here d is a design parameter whose proper value (needed to have a quick response/mitigate damage) may be known for a given application domain; ii) the algorithm narrowly estimates the interval within which a detected change point lies; iii) we propose a novel performance criterion well-matched to low-delay, narrowly localized change point detection – the true detection interval rate (TDIR) – and also evaluate the false positive rate (FPR) and the bias and variance of the estimated change point, all as a function of d. The proposed method is shown to outperform a CUSUM algorithm, symbolic time series analysis (STSA) methods, and a standard HMM method (evaluating the unconditioned likelihood) for instability onset in combustion systems and fatigue failure initiation in a material." @default.
- W3047185276 created "2020-08-10" @default.
- W3047185276 creator A5003487011 @default.
- W3047185276 creator A5049853144 @default.
- W3047185276 creator A5072191764 @default.
- W3047185276 creator A5087661085 @default.
- W3047185276 date "2021-01-01" @default.
- W3047185276 modified "2023-10-16" @default.
- W3047185276 title "HMM conditional-likelihood based change detection with strict delay tolerance" @default.
- W3047185276 cites W1491711721 @default.
- W3047185276 cites W1965189448 @default.
- W3047185276 cites W1965256988 @default.
- W3047185276 cites W1967128863 @default.
- W3047185276 cites W1968771691 @default.
- W3047185276 cites W1971790567 @default.
- W3047185276 cites W1988735619 @default.
- W3047185276 cites W1989016323 @default.
- W3047185276 cites W2001992115 @default.
- W3047185276 cites W2002644365 @default.
- W3047185276 cites W2004094275 @default.
- W3047185276 cites W2024913767 @default.
- W3047185276 cites W2036231395 @default.
- W3047185276 cites W2042251154 @default.
- W3047185276 cites W2056985286 @default.
- W3047185276 cites W2114302345 @default.
- W3047185276 cites W2125838338 @default.
- W3047185276 cites W2129736434 @default.
- W3047185276 cites W2164732286 @default.
- W3047185276 cites W2165959773 @default.
- W3047185276 cites W2166512057 @default.
- W3047185276 cites W2169739344 @default.
- W3047185276 cites W2243199981 @default.
- W3047185276 cites W2335692478 @default.
- W3047185276 cites W2599248742 @default.
- W3047185276 cites W2627066402 @default.
- W3047185276 cites W2703438102 @default.
- W3047185276 cites W2727296334 @default.
- W3047185276 cites W2892333124 @default.
- W3047185276 cites W2894735676 @default.
- W3047185276 cites W2931219761 @default.
- W3047185276 cites W2963385746 @default.
- W3047185276 cites W2963874858 @default.
- W3047185276 cites W2964068301 @default.
- W3047185276 cites W2964234535 @default.
- W3047185276 cites W4249116379 @default.
- W3047185276 doi "https://doi.org/10.1016/j.ymssp.2020.107109" @default.
- W3047185276 hasPublicationYear "2021" @default.
- W3047185276 type Work @default.
- W3047185276 sameAs 3047185276 @default.
- W3047185276 citedByCount "6" @default.
- W3047185276 countsByYear W30471852762021 @default.
- W3047185276 countsByYear W30471852762022 @default.
- W3047185276 countsByYear W30471852762023 @default.
- W3047185276 crossrefType "journal-article" @default.
- W3047185276 hasAuthorship W3047185276A5003487011 @default.
- W3047185276 hasAuthorship W3047185276A5049853144 @default.
- W3047185276 hasAuthorship W3047185276A5072191764 @default.
- W3047185276 hasAuthorship W3047185276A5087661085 @default.
- W3047185276 hasBestOaLocation W30471852761 @default.
- W3047185276 hasConcept C105795698 @default.
- W3047185276 hasConcept C11413529 @default.
- W3047185276 hasConcept C119857082 @default.
- W3047185276 hasConcept C124101348 @default.
- W3047185276 hasConcept C134306372 @default.
- W3047185276 hasConcept C137877099 @default.
- W3047185276 hasConcept C143724316 @default.
- W3047185276 hasConcept C151730666 @default.
- W3047185276 hasConcept C153180895 @default.
- W3047185276 hasConcept C154945302 @default.
- W3047185276 hasConcept C168773036 @default.
- W3047185276 hasConcept C17744445 @default.
- W3047185276 hasConcept C178518018 @default.
- W3047185276 hasConcept C199539241 @default.
- W3047185276 hasConcept C203595873 @default.
- W3047185276 hasConcept C23224414 @default.
- W3047185276 hasConcept C2776359362 @default.
- W3047185276 hasConcept C2778112365 @default.
- W3047185276 hasConcept C33923547 @default.
- W3047185276 hasConcept C34388435 @default.
- W3047185276 hasConcept C41008148 @default.
- W3047185276 hasConcept C54355233 @default.
- W3047185276 hasConcept C739882 @default.
- W3047185276 hasConcept C86803240 @default.
- W3047185276 hasConcept C89128539 @default.
- W3047185276 hasConcept C94625758 @default.
- W3047185276 hasConcept C97256817 @default.
- W3047185276 hasConceptScore W3047185276C105795698 @default.
- W3047185276 hasConceptScore W3047185276C11413529 @default.
- W3047185276 hasConceptScore W3047185276C119857082 @default.
- W3047185276 hasConceptScore W3047185276C124101348 @default.
- W3047185276 hasConceptScore W3047185276C134306372 @default.
- W3047185276 hasConceptScore W3047185276C137877099 @default.
- W3047185276 hasConceptScore W3047185276C143724316 @default.
- W3047185276 hasConceptScore W3047185276C151730666 @default.
- W3047185276 hasConceptScore W3047185276C153180895 @default.
- W3047185276 hasConceptScore W3047185276C154945302 @default.
- W3047185276 hasConceptScore W3047185276C168773036 @default.
- W3047185276 hasConceptScore W3047185276C17744445 @default.