Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047196626> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3047196626 endingPage "103520" @default.
- W3047196626 startingPage "103520" @default.
- W3047196626 abstract "Abstract Earth pressure balance shield tunnel boring machines (EPBM) are widely used in tunneling practice yet the mechanics that define ground-EPBM interaction, specifically the advance rate, are not well understood. In the study presented here, machine learning techniques including feature selection, support vector regression (SVR) and partial dependence plots (PDP), were successfully applied to EPBM data to develop and explain EPBM advance rate modeling through five widely varying soil types. The geotechnical conditions were implicitly incorporated into the analysis by developing soil formation-specific SVR models. The SVR models were highly successful in capturing AR behavior, exhibiting R2 values of 0.88–0.95 when independently evaluated with test data. Automatic feature selection revealed the same EPBM parameters of notable influence on AR across all ESUs, including net thrust, cutterhead torque, foam flow rate and screw conveyor torque. The SVR models, however, revealed considerably different relationships between these key parameters and AR, indicating that the soil plays a significant role in AR behavior. PDP analysis captured the sensitivity of AR to each key parameter as a function of parameter magnitude. The PDP results show that AR is positively correlated (increasing AR with increasing parameter value) and/or negatively correlated (decreasing AR with increasing parameter value) to varying degrees as a function of parameter value, all of which is strongly soil dependent." @default.
- W3047196626 created "2020-08-10" @default.
- W3047196626 creator A5038933037 @default.
- W3047196626 creator A5083930804 @default.
- W3047196626 date "2020-10-01" @default.
- W3047196626 modified "2023-09-27" @default.
- W3047196626 title "Predicting EPBM advance rate performance using support vector regression modeling" @default.
- W3047196626 cites W1553244859 @default.
- W3047196626 cites W1678356000 @default.
- W3047196626 cites W1975664724 @default.
- W3047196626 cites W1999931136 @default.
- W3047196626 cites W2039038402 @default.
- W3047196626 cites W2054224043 @default.
- W3047196626 cites W2110529327 @default.
- W3047196626 cites W2125847307 @default.
- W3047196626 cites W2153635508 @default.
- W3047196626 cites W2166186246 @default.
- W3047196626 cites W2401784868 @default.
- W3047196626 cites W2416069211 @default.
- W3047196626 cites W2566958870 @default.
- W3047196626 cites W2597625476 @default.
- W3047196626 doi "https://doi.org/10.1016/j.tust.2020.103520" @default.
- W3047196626 hasPublicationYear "2020" @default.
- W3047196626 type Work @default.
- W3047196626 sameAs 3047196626 @default.
- W3047196626 citedByCount "22" @default.
- W3047196626 countsByYear W30471966262020 @default.
- W3047196626 countsByYear W30471966262021 @default.
- W3047196626 countsByYear W30471966262022 @default.
- W3047196626 countsByYear W30471966262023 @default.
- W3047196626 crossrefType "journal-article" @default.
- W3047196626 hasAuthorship W3047196626A5038933037 @default.
- W3047196626 hasAuthorship W3047196626A5083930804 @default.
- W3047196626 hasConcept C105795698 @default.
- W3047196626 hasConcept C119857082 @default.
- W3047196626 hasConcept C12267149 @default.
- W3047196626 hasConcept C127413603 @default.
- W3047196626 hasConcept C152877465 @default.
- W3047196626 hasConcept C33923547 @default.
- W3047196626 hasConcept C41008148 @default.
- W3047196626 hasConcept C83546350 @default.
- W3047196626 hasConceptScore W3047196626C105795698 @default.
- W3047196626 hasConceptScore W3047196626C119857082 @default.
- W3047196626 hasConceptScore W3047196626C12267149 @default.
- W3047196626 hasConceptScore W3047196626C127413603 @default.
- W3047196626 hasConceptScore W3047196626C152877465 @default.
- W3047196626 hasConceptScore W3047196626C33923547 @default.
- W3047196626 hasConceptScore W3047196626C41008148 @default.
- W3047196626 hasConceptScore W3047196626C83546350 @default.
- W3047196626 hasLocation W30471966261 @default.
- W3047196626 hasOpenAccess W3047196626 @default.
- W3047196626 hasPrimaryLocation W30471966261 @default.
- W3047196626 hasRelatedWork W2060912888 @default.
- W3047196626 hasRelatedWork W2080727847 @default.
- W3047196626 hasRelatedWork W2119696881 @default.
- W3047196626 hasRelatedWork W2361269264 @default.
- W3047196626 hasRelatedWork W2375722497 @default.
- W3047196626 hasRelatedWork W2390299251 @default.
- W3047196626 hasRelatedWork W4292148089 @default.
- W3047196626 hasRelatedWork W4312198914 @default.
- W3047196626 hasRelatedWork W825123323 @default.
- W3047196626 hasRelatedWork W1969346022 @default.
- W3047196626 hasVolume "104" @default.
- W3047196626 isParatext "false" @default.
- W3047196626 isRetracted "false" @default.
- W3047196626 magId "3047196626" @default.
- W3047196626 workType "article" @default.