Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047216992> ?p ?o ?g. }
- W3047216992 endingPage "143273" @default.
- W3047216992 startingPage "143256" @default.
- W3047216992 abstract "This article presents a novel methodology to detect insurance claim related frauds in the healthcare system using concepts of sequence mining and sequence prediction. Fraud detection in healthcare is a non-trivial task due to the heterogeneous nature of healthcare records. Fraudsters behave as normal patients and with the passage of time keep on changing their way of planting frauds; hence, there is a need to develop fraud detection models. The sequence generation is not the part of previous researches which mostly focus on amount based analysis or medication versus diseases sequential analysis. The proposed methodology is able to generate sequences of services availed or prescribed by each specialty and analyse via two cascaded checks for the detection of insurance claim related frauds. The methodology addresses these challenges and self learns from historical medical records. It is based on two modules namely “Sequence rule engine and Prediction based engine”. The sequence rule engine generates frequent sequences and probabilities of rare sequences for each specialty of the hospital. The comparison of such sequences with the actual patient sequences leads to the identification of anomalies as both sequences are not compliant to the sequences of the rule engine. The system performs further in detail analysis on all non-compliant sequences in the prediction based engine. The proposed methodology is validated by generating patient sequences from last five years transactional data of a local hospital and identifies patterns of service procedures administered to patients using Prefixspan algorithm and Compact prediction tree. Various experiments have been performed to validate the applicability of the developed methodology and the results demonstrate that the methodology is pertinent to detect healthcare frauds and provides on average 85% of accuracy. Thus can help in preventing fraudulent claims and provides better insight into how to improve patient management and treatment procedures." @default.
- W3047216992 created "2020-08-10" @default.
- W3047216992 creator A5016362237 @default.
- W3047216992 creator A5045174435 @default.
- W3047216992 creator A5050441398 @default.
- W3047216992 date "2020-01-01" @default.
- W3047216992 modified "2023-10-16" @default.
- W3047216992 title "Sequence Mining and Prediction-Based Healthcare Fraud Detection Methodology" @default.
- W3047216992 cites W1608194207 @default.
- W3047216992 cites W1973545388 @default.
- W3047216992 cites W1990557724 @default.
- W3047216992 cites W1990800901 @default.
- W3047216992 cites W1991475418 @default.
- W3047216992 cites W2005464046 @default.
- W3047216992 cites W2011430131 @default.
- W3047216992 cites W2017733151 @default.
- W3047216992 cites W2032623688 @default.
- W3047216992 cites W2040401127 @default.
- W3047216992 cites W2040714331 @default.
- W3047216992 cites W2074980655 @default.
- W3047216992 cites W2096256884 @default.
- W3047216992 cites W2110893883 @default.
- W3047216992 cites W2132502528 @default.
- W3047216992 cites W2133841540 @default.
- W3047216992 cites W2146606092 @default.
- W3047216992 cites W2148061495 @default.
- W3047216992 cites W2158396349 @default.
- W3047216992 cites W2158454296 @default.
- W3047216992 cites W2168196587 @default.
- W3047216992 cites W2184719144 @default.
- W3047216992 cites W2214709429 @default.
- W3047216992 cites W2248204980 @default.
- W3047216992 cites W2363917130 @default.
- W3047216992 cites W2400311702 @default.
- W3047216992 cites W2734863171 @default.
- W3047216992 cites W2755041628 @default.
- W3047216992 cites W2786577118 @default.
- W3047216992 cites W2787707077 @default.
- W3047216992 cites W2794652412 @default.
- W3047216992 cites W2879824767 @default.
- W3047216992 cites W2915146239 @default.
- W3047216992 cites W2973232334 @default.
- W3047216992 cites W3000561819 @default.
- W3047216992 cites W3017833093 @default.
- W3047216992 cites W4211139099 @default.
- W3047216992 cites W2609571025 @default.
- W3047216992 doi "https://doi.org/10.1109/access.2020.3013962" @default.
- W3047216992 hasPublicationYear "2020" @default.
- W3047216992 type Work @default.
- W3047216992 sameAs 3047216992 @default.
- W3047216992 citedByCount "16" @default.
- W3047216992 countsByYear W30472169922020 @default.
- W3047216992 countsByYear W30472169922021 @default.
- W3047216992 countsByYear W30472169922022 @default.
- W3047216992 countsByYear W30472169922023 @default.
- W3047216992 crossrefType "journal-article" @default.
- W3047216992 hasAuthorship W3047216992A5016362237 @default.
- W3047216992 hasAuthorship W3047216992A5045174435 @default.
- W3047216992 hasAuthorship W3047216992A5050441398 @default.
- W3047216992 hasBestOaLocation W30472169921 @default.
- W3047216992 hasConcept C116834253 @default.
- W3047216992 hasConcept C124101348 @default.
- W3047216992 hasConcept C127413603 @default.
- W3047216992 hasConcept C136264566 @default.
- W3047216992 hasConcept C162324750 @default.
- W3047216992 hasConcept C201995342 @default.
- W3047216992 hasConcept C2778112365 @default.
- W3047216992 hasConcept C2780378061 @default.
- W3047216992 hasConcept C2780451532 @default.
- W3047216992 hasConcept C41008148 @default.
- W3047216992 hasConcept C54355233 @default.
- W3047216992 hasConcept C59822182 @default.
- W3047216992 hasConcept C86803240 @default.
- W3047216992 hasConceptScore W3047216992C116834253 @default.
- W3047216992 hasConceptScore W3047216992C124101348 @default.
- W3047216992 hasConceptScore W3047216992C127413603 @default.
- W3047216992 hasConceptScore W3047216992C136264566 @default.
- W3047216992 hasConceptScore W3047216992C162324750 @default.
- W3047216992 hasConceptScore W3047216992C201995342 @default.
- W3047216992 hasConceptScore W3047216992C2778112365 @default.
- W3047216992 hasConceptScore W3047216992C2780378061 @default.
- W3047216992 hasConceptScore W3047216992C2780451532 @default.
- W3047216992 hasConceptScore W3047216992C41008148 @default.
- W3047216992 hasConceptScore W3047216992C54355233 @default.
- W3047216992 hasConceptScore W3047216992C59822182 @default.
- W3047216992 hasConceptScore W3047216992C86803240 @default.
- W3047216992 hasLocation W30472169921 @default.
- W3047216992 hasOpenAccess W3047216992 @default.
- W3047216992 hasPrimaryLocation W30472169921 @default.
- W3047216992 hasRelatedWork W2081647779 @default.
- W3047216992 hasRelatedWork W2108237372 @default.
- W3047216992 hasRelatedWork W2319467001 @default.
- W3047216992 hasRelatedWork W2370597599 @default.
- W3047216992 hasRelatedWork W2963891724 @default.
- W3047216992 hasRelatedWork W3128051602 @default.
- W3047216992 hasRelatedWork W3217387898 @default.
- W3047216992 hasRelatedWork W4237750775 @default.
- W3047216992 hasRelatedWork W4248817909 @default.