Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047217279> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3047217279 endingPage "1977" @default.
- W3047217279 startingPage "1976" @default.
- W3047217279 abstract "Central MessageExtending perfusion times in ex vivo techniques.See Article page 1963. Extending perfusion times in ex vivo techniques. See Article page 1963. Extracorporeal lung perfusion may be used to improve metabolic support, extend perfusion times, and potentially optimize organ repair. Hozain and colleagues1Hozain A.E. O'Neill J.D. Pinezich M.R. Tipograf Y. Donocoff R. Cunningham K.M. et al.Xenogeneic cross-circulation for extracorporeal recovery of injured human lungs.Nat Med. 2020; 26: 1102-1113Crossref PubMed Scopus (25) Google Scholar recently reported improved perfusion times and enhanced lung recovery using a model of xenogeneic cross-circulation. Human lungs were, in this manner, perfused using swine circulation and regained function. Nevertheless, the findings highlight the metabolic and hormonal limitations of contemporary ex vivo techniques. They also demonstrate the need for improvements in organ support capabilities that will eliminate the need for xenogeneic cross-circulation. In this article, Takahashi and colleagues2Takahashi M. Cheung H. Watanabe T. Zamel R. Cypel M. Mingyao Liu M. et al.Strategies to prolong homeostasis of ex vivo perfused lungs.J Thorac Cardiovasc Surg. 2021; 161: 1963-1973Abstract Full Text Full Text PDF Scopus (11) Google Scholar catalog their use of modified ex vivo lung perfusate in a porcine model to achieve stable homeostasis in a bid to extend perfusion time. The contribution is timely and relevant and reflects the efforts of an experienced group of transplant surgeons. The authors used 4 groups of 5 Yorkshire male domestic pigs in keeping with the convention endorsed within previously published works.3Nakajima D. Watanabe Y. Ohsumi A. Pipkin M. Chen M. Mordant P. et al.Mesenchymal stromal cell therapy during ex vivo lung perfusion ameliorates ischemia-reperfusion injury in lung transplantation.J Heart Lung Transplant. 2019; 38: 1214-1223Abstract Full Text Full Text PDF PubMed Scopus (28) Google Scholar, 4Koike T. Yeung J.C. Cypel M. Rubacha M. Matsuda Y. Sato M. et al.Kinetics of lactate metabolism during acellular normothermic ex vivo lung perfusion.J Heart Lung Transplant. 2011; 30: 1312-1319Abstract Full Text Full Text PDF PubMed Scopus (49) Google Scholar, 5Cypel M. Yeung J.C. Hirayama S. Rubacha M. Fischer S. Anraku M. et al.Technique for prolonged normothermic ex vivo lung perfusion.J Heart Lung Transplant. 2008; 27: 1319-1325Abstract Full Text Full Text PDF PubMed Scopus (352) Google Scholar, 6Yeung J.C. Cypel M. Machuca T.N. Koike T. Cook D.J. Bonato R. et al.Physiologic assessment of the ex vivo donor 406 lung for transplantation.J Heart Lung Transplant. 2012; 31: 1120-1126Abstract Full Text Full Text PDF PubMed Scopus (95) Google Scholar However, the small sample size engenders the threat of a type 2 error that remains prevalent throughout the article. The authors used a mixed-effects linear regression and predicated the analysis on alterations in dynamic compliance and airway pressure. They selected, somewhat arbitrarily, the value of 15 mL/cm H2O as a cutoff for futility with a rationale that caters perhaps more to convenience than strict pathophysiologic construct. For this determination, the authors refer to previously published works in which they investigated the kinetics of lactate metabolism, highlighting the fact that lungs with high lactate/pyruvate ratios demonstrated higher peak airway pressures, lower glucose levels, and higher lactate levels.4Koike T. Yeung J.C. Cypel M. Rubacha M. Matsuda Y. Sato M. et al.Kinetics of lactate metabolism during acellular normothermic ex vivo lung perfusion.J Heart Lung Transplant. 2011; 30: 1312-1319Abstract Full Text Full Text PDF PubMed Scopus (49) Google Scholar There was a significant increase in dynamic compliance in the treatment groups, together with reductions in peak airway pressure and pulmonary vascular resistance, the latter of which distinguishes it from previous reports.7Buchko M.T. Stewart C.J. Hatami S. Himmat S. Freed D.H. Nagendran J. Total parenteral nutrition in ex vivo lung perfusion: addressing metabolism improves both inflammation and oxygenation.Am J Transplant. 2019; 19: 3390-3397Crossref PubMed Scopus (10) Google Scholar Nevertheless, multiple questions abound. How best can one interpret the observations, considering the use of lungs that had no significant inflammatory injury? Could the difference potentially be the result of a type 1 error? By their own admission, the authors admit this effect to be an incompletely understood phenomenon, and so it remains unclear how nutritional augmentation contributes to lung preservation. Unmitigated, the ambiguity tempers the enthusiasm and confidence with which the study is received. Furthermore, despite the decrease in cytokine levels within the small sample, it remains unclear which circulating biomarkers best reflect airway inflammation and lung function. As a result, authoritative conclusions must be attenuated somewhat. Nevertheless, the total parenteral nutrition group achieved significantly longer stable perfusion times. Likewise, inflammatory cytokine production was also notably reduced in the continuous replacement group. Having achieved intravascular delivery of mesenchymal stem cells during ex vivo lung perfusion in an earlier exploration, establishing homeostasis that might extend the duration of perfusion is truly of considerable clinical importance. Success in this regard may pave the way for the routine use of augmenting mediators in ex vivo perfusion. The rationale, nonetheless, remains equivocal in structure, process, and outcome but serves as fertile substrate to generate hypotheses and broaden the search for even more ways to extend perfusion in a quest, ultimately to increase the number of available organs for donation—the ultimate gift. Strategies to prolong homeostasis of ex vivo perfused lungsThe Journal of Thoracic and Cardiovascular SurgeryVol. 161Issue 6PreviewEx vivo lung perfusion provides an innovative method to assess and repair donor lungs. The current Toronto ex vivo lung perfusion protocol can reliably and reproducibly preserve lungs for 12 hours. A longer ex vivo lung perfusion preservation time could enable the application of more advanced repair therapies and the rescue of more donor lungs for lung transplant. Our objective was to achieve stable 24-hour normothermic ex vivo lung perfusion. Full-Text PDF" @default.
- W3047217279 created "2020-08-10" @default.
- W3047217279 creator A5029835686 @default.
- W3047217279 creator A5079404229 @default.
- W3047217279 creator A5089466181 @default.
- W3047217279 date "2021-06-01" @default.
- W3047217279 modified "2023-10-17" @default.
- W3047217279 title "Commentary: Dispensing with compliance" @default.
- W3047217279 cites W2067204032 @default.
- W3047217279 cites W2079748904 @default.
- W3047217279 cites W2083067632 @default.
- W3047217279 cites W2965582073 @default.
- W3047217279 cites W2967889035 @default.
- W3047217279 cites W3041065302 @default.
- W3047217279 cites W3048423065 @default.
- W3047217279 doi "https://doi.org/10.1016/j.jtcvs.2020.07.082" @default.
- W3047217279 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7988895" @default.
- W3047217279 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32859420" @default.
- W3047217279 hasPublicationYear "2021" @default.
- W3047217279 type Work @default.
- W3047217279 sameAs 3047217279 @default.
- W3047217279 citedByCount "0" @default.
- W3047217279 crossrefType "journal-article" @default.
- W3047217279 hasAuthorship W3047217279A5029835686 @default.
- W3047217279 hasAuthorship W3047217279A5079404229 @default.
- W3047217279 hasAuthorship W3047217279A5089466181 @default.
- W3047217279 hasBestOaLocation W30472172791 @default.
- W3047217279 hasConcept C126322002 @default.
- W3047217279 hasConcept C146957229 @default.
- W3047217279 hasConcept C150903083 @default.
- W3047217279 hasConcept C164705383 @default.
- W3047217279 hasConcept C207001950 @default.
- W3047217279 hasConcept C26291073 @default.
- W3047217279 hasConcept C2777714996 @default.
- W3047217279 hasConcept C2994232697 @default.
- W3047217279 hasConcept C63645605 @default.
- W3047217279 hasConcept C71924100 @default.
- W3047217279 hasConcept C86803240 @default.
- W3047217279 hasConceptScore W3047217279C126322002 @default.
- W3047217279 hasConceptScore W3047217279C146957229 @default.
- W3047217279 hasConceptScore W3047217279C150903083 @default.
- W3047217279 hasConceptScore W3047217279C164705383 @default.
- W3047217279 hasConceptScore W3047217279C207001950 @default.
- W3047217279 hasConceptScore W3047217279C26291073 @default.
- W3047217279 hasConceptScore W3047217279C2777714996 @default.
- W3047217279 hasConceptScore W3047217279C2994232697 @default.
- W3047217279 hasConceptScore W3047217279C63645605 @default.
- W3047217279 hasConceptScore W3047217279C71924100 @default.
- W3047217279 hasConceptScore W3047217279C86803240 @default.
- W3047217279 hasIssue "6" @default.
- W3047217279 hasLocation W30472172791 @default.
- W3047217279 hasLocation W30472172792 @default.
- W3047217279 hasLocation W30472172793 @default.
- W3047217279 hasOpenAccess W3047217279 @default.
- W3047217279 hasPrimaryLocation W30472172791 @default.
- W3047217279 hasRelatedWork W2069664572 @default.
- W3047217279 hasRelatedWork W2124388778 @default.
- W3047217279 hasRelatedWork W2410942747 @default.
- W3047217279 hasRelatedWork W2819514437 @default.
- W3047217279 hasRelatedWork W3001629579 @default.
- W3047217279 hasRelatedWork W3007372527 @default.
- W3047217279 hasRelatedWork W3048423065 @default.
- W3047217279 hasRelatedWork W3127627855 @default.
- W3047217279 hasRelatedWork W3158667777 @default.
- W3047217279 hasRelatedWork W4249313914 @default.
- W3047217279 hasVolume "161" @default.
- W3047217279 isParatext "false" @default.
- W3047217279 isRetracted "false" @default.
- W3047217279 magId "3047217279" @default.
- W3047217279 workType "article" @default.