Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047228301> ?p ?o ?g. }
- W3047228301 endingPage "5300" @default.
- W3047228301 startingPage "5287" @default.
- W3047228301 abstract "Purpose To (a) characterize the fundamental optical and dosimetric properties of the storage phosphor europium‐doped potassium chloride for quantitative proton dosimetry, and (b) investigate if its dose radiation response can be described by an analytic radiation transport model. Methods Cylindrical KCl:Eu 2+ dosimeters with dimensions of 6 mm diameter and 1 mm thickness were fabricated in‐house. The dosimeters were irradiated using both a Mevion S250 passive scattering proton therapy system and a Varian Clinac iX linear accelerator. Photostimulated luminescence (PSL) emission spectra, excitation spectra, and luminescence lifetimes were measured for both proton and photon irradiations. Dosimetric properties including radiation hardness, dose linearity, signal stabilization, dose rate sensitivity, and energy dependence were studied using a laboratory optical reader after irradiations. The dosimeters were modeled using physical quantities including mass stopping powers in the storage phosphor and water for a given proton beam, and mass energy absorption coefficients and massing stopping powers in detector and water for a given photon beam. Results KCl:Eu 2+ exhibited optical emission and stimulation peaks at 421 and 560 nm, respectively, for both proton and photon irradiations, enabling postirradiation readouts using a visible light source while detecting the PSL using a photomultiplier tube. KCl:Eu 2+ showed a linear response from 0 to 8 Gy absorbed dose‐to‐water, a large dynamic range up to 60 Gy, dose‐rate independence measured from 83 to 500 MU/min, and a PSL lifetime of <5 ms that is sufficiently short for supporting rapid scanning in a two‐dimensional geometry. KCl:Eu 2+ was highly reusable with only a slight signal decrease of ~3% at accumulated doses over 100 Gy, which could be managed by a periodic recalibration. The detected PSL signal strength of the dosimeter in the proton field had been calculated accurately to a maximum discrepancy of 2% using known physical quantities along with its prior signal strength as measured in a photon field at the same dose‐to‐water. This discrepancy might be attributed to an under‐response due to linear energy transfer (LET) effect. However, comparisons of depth‐dose measurements in a spread‐out Bragg peak (SOBP) field with a parallel‐plate ionization chamber showed no clear evidence of LET effects. Furthermore, range measurements agreed with ionization chamber measurements to within 1 mm. Conclusions KCl:Eu 2+ showed linear response over a large dynamic range for proton irradiations and reliably reproduced SOBP measurements as measured by ionization chambers. Its relatively low atomic number of 18 and near LET independence make it suited for quantitative proton dosimetry. In addition, its high radiation hardness means that it can be reused numerous times. Any potential measurement artifacts encountered in complex irradiation conditions should be able to be corrected for using known physical quantities." @default.
- W3047228301 created "2020-08-10" @default.
- W3047228301 creator A5044242635 @default.
- W3047228301 creator A5058458114 @default.
- W3047228301 creator A5059029310 @default.
- W3047228301 creator A5061476820 @default.
- W3047228301 creator A5072453051 @default.
- W3047228301 creator A5089512128 @default.
- W3047228301 creator A5089586439 @default.
- W3047228301 date "2020-08-16" @default.
- W3047228301 modified "2023-09-22" @default.
- W3047228301 title "Quantitative proton radiation therapy dosimetry using the storage phosphor europium‐doped potassium chloride" @default.
- W3047228301 cites W1593344722 @default.
- W3047228301 cites W1623964449 @default.
- W3047228301 cites W1626876228 @default.
- W3047228301 cites W1966689897 @default.
- W3047228301 cites W1971360992 @default.
- W3047228301 cites W1977039187 @default.
- W3047228301 cites W1977288570 @default.
- W3047228301 cites W1989471012 @default.
- W3047228301 cites W1991405556 @default.
- W3047228301 cites W1997087522 @default.
- W3047228301 cites W2026366215 @default.
- W3047228301 cites W2030688434 @default.
- W3047228301 cites W2043156006 @default.
- W3047228301 cites W2047607724 @default.
- W3047228301 cites W2050266656 @default.
- W3047228301 cites W2052271618 @default.
- W3047228301 cites W2054134572 @default.
- W3047228301 cites W2057920553 @default.
- W3047228301 cites W2065530731 @default.
- W3047228301 cites W2067303952 @default.
- W3047228301 cites W2067972435 @default.
- W3047228301 cites W2070257847 @default.
- W3047228301 cites W2070432737 @default.
- W3047228301 cites W2074950396 @default.
- W3047228301 cites W2076453258 @default.
- W3047228301 cites W2081388818 @default.
- W3047228301 cites W2084203713 @default.
- W3047228301 cites W2085210433 @default.
- W3047228301 cites W2104891102 @default.
- W3047228301 cites W2107667490 @default.
- W3047228301 cites W2116345430 @default.
- W3047228301 cites W2116706051 @default.
- W3047228301 cites W2131065973 @default.
- W3047228301 cites W2132490386 @default.
- W3047228301 cites W2136309683 @default.
- W3047228301 cites W2138309709 @default.
- W3047228301 cites W2139664617 @default.
- W3047228301 cites W2150993402 @default.
- W3047228301 cites W2151904901 @default.
- W3047228301 cites W2163627075 @default.
- W3047228301 cites W2301297510 @default.
- W3047228301 cites W2466142508 @default.
- W3047228301 cites W2499236741 @default.
- W3047228301 cites W2505110857 @default.
- W3047228301 cites W2623538924 @default.
- W3047228301 cites W2791108487 @default.
- W3047228301 cites W2793432989 @default.
- W3047228301 cites W2901435212 @default.
- W3047228301 cites W2908570353 @default.
- W3047228301 cites W2915204723 @default.
- W3047228301 cites W3048014182 @default.
- W3047228301 cites W4234244490 @default.
- W3047228301 doi "https://doi.org/10.1002/mp.14423" @default.
- W3047228301 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32750155" @default.
- W3047228301 hasPublicationYear "2020" @default.
- W3047228301 type Work @default.
- W3047228301 sameAs 3047228301 @default.
- W3047228301 citedByCount "3" @default.
- W3047228301 countsByYear W30472283012021 @default.
- W3047228301 crossrefType "journal-article" @default.
- W3047228301 hasAuthorship W3047228301A5044242635 @default.
- W3047228301 hasAuthorship W3047228301A5058458114 @default.
- W3047228301 hasAuthorship W3047228301A5059029310 @default.
- W3047228301 hasAuthorship W3047228301A5061476820 @default.
- W3047228301 hasAuthorship W3047228301A5072453051 @default.
- W3047228301 hasAuthorship W3047228301A5089512128 @default.
- W3047228301 hasAuthorship W3047228301A5089586439 @default.
- W3047228301 hasConcept C105636585 @default.
- W3047228301 hasConcept C111337013 @default.
- W3047228301 hasConcept C113196181 @default.
- W3047228301 hasConcept C120665830 @default.
- W3047228301 hasConcept C121332964 @default.
- W3047228301 hasConcept C124385694 @default.
- W3047228301 hasConcept C125800877 @default.
- W3047228301 hasConcept C148869448 @default.
- W3047228301 hasConcept C151337348 @default.
- W3047228301 hasConcept C177322064 @default.
- W3047228301 hasConcept C185544564 @default.
- W3047228301 hasConcept C185592680 @default.
- W3047228301 hasConcept C192562407 @default.
- W3047228301 hasConcept C2989005 @default.
- W3047228301 hasConcept C43617362 @default.
- W3047228301 hasConcept C49040817 @default.
- W3047228301 hasConcept C502696234 @default.
- W3047228301 hasConcept C54219255 @default.
- W3047228301 hasConcept C54516573 @default.