Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047346431> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3047346431 endingPage "e17818" @default.
- W3047346431 startingPage "e17818" @default.
- W3047346431 abstract "Background Emotional state in everyday life is an essential indicator of health and well-being. However, daily assessment of emotional states largely depends on active self-reports, which are often inconvenient and prone to incomplete information. Automated detection of emotional states and transitions on a daily basis could be an effective solution to this problem. However, the relationship between emotional transitions and everyday context remains to be unexplored. Objective This study aims to explore the relationship between contextual information and emotional transitions and states to evaluate the feasibility of detecting emotional transitions and states from daily contextual information using machine learning (ML) techniques. Methods This study was conducted on the data of 18 individuals from a publicly available data set called ExtraSensory. Contextual and sensor data were collected using smartphone and smartwatch sensors in a free-living condition, where the number of days for each person varied from 3 to 9. Sensors included an accelerometer, a gyroscope, a compass, location services, a microphone, a phone state indicator, light, temperature, and a barometer. The users self-reported approximately 49 discrete emotions at different intervals via a smartphone app throughout the data collection period. We mapped the 49 reported discrete emotions to the 3 dimensions of the pleasure, arousal, and dominance model and considered 6 emotional states: discordant, pleased, dissuaded, aroused, submissive, and dominant. We built general and personalized models for detecting emotional transitions and states every 5 min. The transition detection problem is a binary classification problem that detects whether a person’s emotional state has changed over time, whereas state detection is a multiclass classification problem. In both cases, a wide range of supervised ML algorithms were leveraged, in addition to data preprocessing, feature selection, and data imbalance handling techniques. Finally, an assessment was conducted to shed light on the association between everyday context and emotional states. Results This study obtained promising results for emotional state and transition detection. The best area under the receiver operating characteristic (AUROC) curve for emotional state detection reached 60.55% in the general models and an average of 96.33% across personalized models. Despite the highly imbalanced data, the best AUROC curve for emotional transition detection reached 90.5% in the general models and an average of 88.73% across personalized models. In general, feature analyses show that spatiotemporal context, phone state, and motion-related information are the most informative factors for emotional state and transition detection. Our assessment showed that lifestyle has an impact on the predictability of emotion. Conclusions Our results demonstrate a strong association of daily context with emotional states and transitions as well as the feasibility of detecting emotional states and transitions using data from smartphone and smartwatch sensors." @default.
- W3047346431 created "2020-08-10" @default.
- W3047346431 creator A5005318646 @default.
- W3047346431 creator A5005731136 @default.
- W3047346431 creator A5037744076 @default.
- W3047346431 date "2020-09-29" @default.
- W3047346431 modified "2023-10-12" @default.
- W3047346431 title "Using Machine Learning and Smartphone and Smartwatch Data to Detect Emotional States and Transitions: Exploratory Study" @default.
- W3047346431 cites W1859669582 @default.
- W3047346431 cites W1906543112 @default.
- W3047346431 cites W2003653478 @default.
- W3047346431 cites W2008264338 @default.
- W3047346431 cites W2023736093 @default.
- W3047346431 cites W2065864529 @default.
- W3047346431 cites W2148143831 @default.
- W3047346431 cites W2149628368 @default.
- W3047346431 cites W2156567116 @default.
- W3047346431 cites W2290270843 @default.
- W3047346431 cites W2321609854 @default.
- W3047346431 cites W2415188425 @default.
- W3047346431 cites W2514431209 @default.
- W3047346431 cites W2604757304 @default.
- W3047346431 cites W2605108175 @default.
- W3047346431 cites W2767586789 @default.
- W3047346431 cites W2783583489 @default.
- W3047346431 cites W2795423566 @default.
- W3047346431 cites W2888288032 @default.
- W3047346431 cites W2891525603 @default.
- W3047346431 cites W2915095068 @default.
- W3047346431 cites W2949366704 @default.
- W3047346431 cites W2963373106 @default.
- W3047346431 cites W2979385867 @default.
- W3047346431 cites W565833860 @default.
- W3047346431 doi "https://doi.org/10.2196/17818" @default.
- W3047346431 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7584158" @default.
- W3047346431 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32990638" @default.
- W3047346431 hasPublicationYear "2020" @default.
- W3047346431 type Work @default.
- W3047346431 sameAs 3047346431 @default.
- W3047346431 citedByCount "23" @default.
- W3047346431 countsByYear W30473464312020 @default.
- W3047346431 countsByYear W30473464312021 @default.
- W3047346431 countsByYear W30473464312022 @default.
- W3047346431 countsByYear W30473464312023 @default.
- W3047346431 crossrefType "journal-article" @default.
- W3047346431 hasAuthorship W3047346431A5005318646 @default.
- W3047346431 hasAuthorship W3047346431A5005731136 @default.
- W3047346431 hasAuthorship W3047346431A5037744076 @default.
- W3047346431 hasBestOaLocation W30473464311 @default.
- W3047346431 hasConcept C119857082 @default.
- W3047346431 hasConcept C149635348 @default.
- W3047346431 hasConcept C150594956 @default.
- W3047346431 hasConcept C151730666 @default.
- W3047346431 hasConcept C154945302 @default.
- W3047346431 hasConcept C15744967 @default.
- W3047346431 hasConcept C180747234 @default.
- W3047346431 hasConcept C2779343474 @default.
- W3047346431 hasConcept C29794715 @default.
- W3047346431 hasConcept C41008148 @default.
- W3047346431 hasConcept C86803240 @default.
- W3047346431 hasConceptScore W3047346431C119857082 @default.
- W3047346431 hasConceptScore W3047346431C149635348 @default.
- W3047346431 hasConceptScore W3047346431C150594956 @default.
- W3047346431 hasConceptScore W3047346431C151730666 @default.
- W3047346431 hasConceptScore W3047346431C154945302 @default.
- W3047346431 hasConceptScore W3047346431C15744967 @default.
- W3047346431 hasConceptScore W3047346431C180747234 @default.
- W3047346431 hasConceptScore W3047346431C2779343474 @default.
- W3047346431 hasConceptScore W3047346431C29794715 @default.
- W3047346431 hasConceptScore W3047346431C41008148 @default.
- W3047346431 hasConceptScore W3047346431C86803240 @default.
- W3047346431 hasIssue "9" @default.
- W3047346431 hasLocation W30473464311 @default.
- W3047346431 hasLocation W30473464312 @default.
- W3047346431 hasOpenAccess W3047346431 @default.
- W3047346431 hasPrimaryLocation W30473464311 @default.
- W3047346431 hasRelatedWork W2014144153 @default.
- W3047346431 hasRelatedWork W3106359073 @default.
- W3047346431 hasRelatedWork W3135542633 @default.
- W3047346431 hasRelatedWork W3201415729 @default.
- W3047346431 hasRelatedWork W4200415919 @default.
- W3047346431 hasRelatedWork W4226054578 @default.
- W3047346431 hasRelatedWork W4286859331 @default.
- W3047346431 hasRelatedWork W4292862515 @default.
- W3047346431 hasRelatedWork W4293763814 @default.
- W3047346431 hasRelatedWork W4312865288 @default.
- W3047346431 hasVolume "8" @default.
- W3047346431 isParatext "false" @default.
- W3047346431 isRetracted "false" @default.
- W3047346431 magId "3047346431" @default.
- W3047346431 workType "article" @default.