Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047347112> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3047347112 abstract "We designed a multi-organ, multi-label disease classification algorithm for computed tomography (CT) scans using case-level labels from radiology text reports. A rule-based algorithm extracted 19,255 disease labels from reports of 13,667 body CT scans from 12,092 subjects. A 3D DenseVNet was trained to segment 3 organ systems: lungs/pleura, liver/gallbladder, and kidneys. From patches guided by segmentations, a 3D convolutional neural network provided multi-label disease classification for normality versus four common diseases per organ. The process was tested on 2,158 CT volumes with 2,875 manually obtained labels. Manual validation of the rulebased labels confirmed 91 to 99% accuracy. Results were characterized using the receiver operating characteristic area under the curve (AUC). Classification AUCs for lungs/pleura labels were as follows: atelectasis 0.77 (95% confidence intervals 0.74 to 0.81), nodule 0.65 (0.61 to 0.69), emphysema 0.89 (0.86 to 0.92), effusion 0.97 (0.96 to 0.98), and normal 0.89 (0.87 to 0.91). For liver/gallbladder, AUCs were: stone 0.62 (0.56 to 0.67), lesion 0.73 (0.69 to 0.77), dilation 0.87 (0.84 to 0.90), fatty 0.89 (0.86 to 0.92), and normal 0.82 (0.78 to 0.85). For kidneys, AUCs were: stone 0.83 (0.79 to 0.87), atrophy 0.92 (0.89 to 0.94), lesion 0.68 (0.64 to 0.72), cyst 0.70 (0.66 to 0.73), and normal 0.79 (0.75 to 0.83). In conclusion, by using automated extraction of disease labels from radiology reports, we created a weakly supervised, multi-organ, multi-disease classifier that can be easily adapted to efficiently leverage massive amounts of unannotated data associated with medical images." @default.
- W3047347112 created "2020-08-10" @default.
- W3047347112 creator A5001300575 @default.
- W3047347112 creator A5010636698 @default.
- W3047347112 creator A5021555712 @default.
- W3047347112 creator A5033684433 @default.
- W3047347112 creator A5040192736 @default.
- W3047347112 creator A5082031190 @default.
- W3047347112 creator A5084136385 @default.
- W3047347112 creator A5089969284 @default.
- W3047347112 date "2020-08-03" @default.
- W3047347112 modified "2023-09-23" @default.
- W3047347112 title "Weakly Supervised Multi-Organ Multi-Disease Classification of Body CT Scans." @default.
- W3047347112 cites W1664251743 @default.
- W3047347112 cites W1901129140 @default.
- W3047347112 cites W1903029394 @default.
- W3047347112 cites W2043806601 @default.
- W3047347112 cites W2883683269 @default.
- W3047347112 cites W2887719255 @default.
- W3047347112 cites W2922217454 @default.
- W3047347112 cites W2963466845 @default.
- W3047347112 cites W2963663752 @default.
- W3047347112 cites W2970105478 @default.
- W3047347112 cites W2995225687 @default.
- W3047347112 cites W3009692632 @default.
- W3047347112 cites W3012087326 @default.
- W3047347112 hasPublicationYear "2020" @default.
- W3047347112 type Work @default.
- W3047347112 sameAs 3047347112 @default.
- W3047347112 citedByCount "1" @default.
- W3047347112 countsByYear W30473471122021 @default.
- W3047347112 crossrefType "posted-content" @default.
- W3047347112 hasAuthorship W3047347112A5001300575 @default.
- W3047347112 hasAuthorship W3047347112A5010636698 @default.
- W3047347112 hasAuthorship W3047347112A5021555712 @default.
- W3047347112 hasAuthorship W3047347112A5033684433 @default.
- W3047347112 hasAuthorship W3047347112A5040192736 @default.
- W3047347112 hasAuthorship W3047347112A5082031190 @default.
- W3047347112 hasAuthorship W3047347112A5084136385 @default.
- W3047347112 hasAuthorship W3047347112A5089969284 @default.
- W3047347112 hasConcept C126322002 @default.
- W3047347112 hasConcept C126838900 @default.
- W3047347112 hasConcept C2777148285 @default.
- W3047347112 hasConcept C2777714996 @default.
- W3047347112 hasConcept C2781101014 @default.
- W3047347112 hasConcept C2989005 @default.
- W3047347112 hasConcept C58471807 @default.
- W3047347112 hasConcept C71924100 @default.
- W3047347112 hasConceptScore W3047347112C126322002 @default.
- W3047347112 hasConceptScore W3047347112C126838900 @default.
- W3047347112 hasConceptScore W3047347112C2777148285 @default.
- W3047347112 hasConceptScore W3047347112C2777714996 @default.
- W3047347112 hasConceptScore W3047347112C2781101014 @default.
- W3047347112 hasConceptScore W3047347112C2989005 @default.
- W3047347112 hasConceptScore W3047347112C58471807 @default.
- W3047347112 hasConceptScore W3047347112C71924100 @default.
- W3047347112 hasLocation W30473471121 @default.
- W3047347112 hasOpenAccess W3047347112 @default.
- W3047347112 hasPrimaryLocation W30473471121 @default.
- W3047347112 hasRelatedWork W1490465777 @default.
- W3047347112 hasRelatedWork W1551234453 @default.
- W3047347112 hasRelatedWork W1985502382 @default.
- W3047347112 hasRelatedWork W2024739704 @default.
- W3047347112 hasRelatedWork W2083360557 @default.
- W3047347112 hasRelatedWork W2083432437 @default.
- W3047347112 hasRelatedWork W2578708206 @default.
- W3047347112 hasRelatedWork W2800038717 @default.
- W3047347112 hasRelatedWork W2806480953 @default.
- W3047347112 hasRelatedWork W2921084128 @default.
- W3047347112 hasRelatedWork W2921693760 @default.
- W3047347112 hasRelatedWork W3027296867 @default.
- W3047347112 hasRelatedWork W3028070348 @default.
- W3047347112 hasRelatedWork W3028820785 @default.
- W3047347112 hasRelatedWork W3045753466 @default.
- W3047347112 hasRelatedWork W3092972206 @default.
- W3047347112 hasRelatedWork W3176191943 @default.
- W3047347112 hasRelatedWork W3190546449 @default.
- W3047347112 hasRelatedWork W3196799478 @default.
- W3047347112 hasRelatedWork W3205435018 @default.
- W3047347112 isParatext "false" @default.
- W3047347112 isRetracted "false" @default.
- W3047347112 magId "3047347112" @default.
- W3047347112 workType "article" @default.