Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047481506> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3047481506 endingPage "770" @default.
- W3047481506 startingPage "756" @default.
- W3047481506 abstract "The proper estimation of the amount of suspended sediment in rivers has an important role in erosion and sediment studies, hydrology and management of watersheds. The simulation of suspended sediment in hydrological systems that has a lot of complexity and at the same time our understanding of the components and processes within them is always uncertain led to the use of many intelligent models, including artificial neural networks (ANNs). However, the use of these smart models also faces challenges. Determining the proper structure of the network requires optimization of the parameters used (such as the optimal number of neurons and layers, weight and bias, and the type of activation functions), which their proper calibration, using test and error, leads to a lot of time spent in low efficiency. In this study, a multilayer perceptron (MLP) was used to simulate the daily sediment load of the Nirchai River at the site of the Nair hydrometric station in Ardebil province. In order to train the models, in addition to the error back propagation (BP) algorithm, Particle Swarm Optimization (PSO) algorithm was used to optimize the weight and bias of ANNs. The fuzzy clustering method was also used to increase the power of generalization of the models. The results showed that training of ANN models with PSO algorithm with decreasing estimation error (decreasing the PBIAS of estimation and root mean square error up to 0.3% and 10.4 tons per day respectively) is more effective than ANN models that use only error BP techniques. Due to insufficient recorded sediment data in most hydrometric stations of the country on the one hand and the need to train ANNs with sufficient data on the other hand, the use of evolutionary algorithms (e.g. PSO algorithm) can be a good solution for improving the efficiency of intelligent models." @default.
- W3047481506 created "2020-08-10" @default.
- W3047481506 creator A5052260417 @default.
- W3047481506 creator A5058682705 @default.
- W3047481506 creator A5086219720 @default.
- W3047481506 date "2020-09-22" @default.
- W3047481506 modified "2023-09-26" @default.
- W3047481506 title "Improvement of the efficiency of artificial neural network model in suspended sediment simulation using particle swarm optimization algorithm" @default.
- W3047481506 doi "https://doi.org/10.22092/ijwmse.2019.125871.1638" @default.
- W3047481506 hasPublicationYear "2020" @default.
- W3047481506 type Work @default.
- W3047481506 sameAs 3047481506 @default.
- W3047481506 citedByCount "2" @default.
- W3047481506 countsByYear W30474815062021 @default.
- W3047481506 countsByYear W30474815062022 @default.
- W3047481506 crossrefType "journal-article" @default.
- W3047481506 hasAuthorship W3047481506A5052260417 @default.
- W3047481506 hasAuthorship W3047481506A5058682705 @default.
- W3047481506 hasAuthorship W3047481506A5086219720 @default.
- W3047481506 hasConcept C105795698 @default.
- W3047481506 hasConcept C11413529 @default.
- W3047481506 hasConcept C126255220 @default.
- W3047481506 hasConcept C127313418 @default.
- W3047481506 hasConcept C134306372 @default.
- W3047481506 hasConcept C139945424 @default.
- W3047481506 hasConcept C151730666 @default.
- W3047481506 hasConcept C154945302 @default.
- W3047481506 hasConcept C165838908 @default.
- W3047481506 hasConcept C177148314 @default.
- W3047481506 hasConcept C179717631 @default.
- W3047481506 hasConcept C2780981602 @default.
- W3047481506 hasConcept C2816523 @default.
- W3047481506 hasConcept C33923547 @default.
- W3047481506 hasConcept C41008148 @default.
- W3047481506 hasConcept C50644808 @default.
- W3047481506 hasConcept C58166 @default.
- W3047481506 hasConcept C85617194 @default.
- W3047481506 hasConceptScore W3047481506C105795698 @default.
- W3047481506 hasConceptScore W3047481506C11413529 @default.
- W3047481506 hasConceptScore W3047481506C126255220 @default.
- W3047481506 hasConceptScore W3047481506C127313418 @default.
- W3047481506 hasConceptScore W3047481506C134306372 @default.
- W3047481506 hasConceptScore W3047481506C139945424 @default.
- W3047481506 hasConceptScore W3047481506C151730666 @default.
- W3047481506 hasConceptScore W3047481506C154945302 @default.
- W3047481506 hasConceptScore W3047481506C165838908 @default.
- W3047481506 hasConceptScore W3047481506C177148314 @default.
- W3047481506 hasConceptScore W3047481506C179717631 @default.
- W3047481506 hasConceptScore W3047481506C2780981602 @default.
- W3047481506 hasConceptScore W3047481506C2816523 @default.
- W3047481506 hasConceptScore W3047481506C33923547 @default.
- W3047481506 hasConceptScore W3047481506C41008148 @default.
- W3047481506 hasConceptScore W3047481506C50644808 @default.
- W3047481506 hasConceptScore W3047481506C58166 @default.
- W3047481506 hasConceptScore W3047481506C85617194 @default.
- W3047481506 hasIssue "3" @default.
- W3047481506 hasLocation W30474815061 @default.
- W3047481506 hasOpenAccess W3047481506 @default.
- W3047481506 hasPrimaryLocation W30474815061 @default.
- W3047481506 hasRelatedWork W1567845545 @default.
- W3047481506 hasRelatedWork W1834484028 @default.
- W3047481506 hasRelatedWork W1987345571 @default.
- W3047481506 hasRelatedWork W2000779904 @default.
- W3047481506 hasRelatedWork W2091499726 @default.
- W3047481506 hasRelatedWork W2165815058 @default.
- W3047481506 hasRelatedWork W2354085490 @default.
- W3047481506 hasRelatedWork W2384524569 @default.
- W3047481506 hasRelatedWork W2396038547 @default.
- W3047481506 hasRelatedWork W2512942137 @default.
- W3047481506 hasRelatedWork W2550235492 @default.
- W3047481506 hasRelatedWork W2896412764 @default.
- W3047481506 hasRelatedWork W2909525515 @default.
- W3047481506 hasRelatedWork W3033382461 @default.
- W3047481506 hasRelatedWork W3094920651 @default.
- W3047481506 hasRelatedWork W3127436653 @default.
- W3047481506 hasRelatedWork W3204566219 @default.
- W3047481506 hasRelatedWork W928753837 @default.
- W3047481506 hasRelatedWork W2558738641 @default.
- W3047481506 hasRelatedWork W3140288011 @default.
- W3047481506 hasVolume "12" @default.
- W3047481506 isParatext "false" @default.
- W3047481506 isRetracted "false" @default.
- W3047481506 magId "3047481506" @default.
- W3047481506 workType "article" @default.