Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047492810> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3047492810 endingPage "100409" @default.
- W3047492810 startingPage "100409" @default.
- W3047492810 abstract "Multiple sclerosis (MS) is an immune-mediated inflammatory disease that attacks myelinated axons in the central nervous system, destroying myelin and axons to variable degrees and, resulting in significant physical disability. Magnetic resonance imaging (MRI) is useful in the diagnosis of MS, surpassing all other imaging techniques in terms of prediction accuracy. Depending on the number and location of lesions, however, the success of MR can vary significantly in terms of sensitivity and specificity in the diagnosis of MS. Adverse effects of various intensity and residual artifacts in the MRI data make it challenging to compute MS lesion volume to assess the progression of MS. Therefore, the development of robust and automated MS lesion detection methods has been a challenge. This study aims to develop a novel, robust, and simple image segmentation method to perform quantitative analysis of MS lesions from multimodal MRI data. An algorithm based on a supervised minimum Euclidean distance-based clustering method employing three 2D MRI modalities, T1-weighted (T1w), fluid-attenuated inversion recovery (FLAIR), and T2-weighted (T2w) MRI was developed for classification of significant brain tissues and MS lesions. The developed method was applied to an MRI dataset from six MS patients. The developed method classifies various brain tissues and detects MS lesions with over 90% accuracy and specificity, and 62%–65% sensitivity, on average. Segmentation of different brain tissues using our proposed algorithm results in superior MS lesion-detection accuracy, comparable with the recent deep-learning classification results in the literature." @default.
- W3047492810 created "2020-08-10" @default.
- W3047492810 creator A5051887580 @default.
- W3047492810 creator A5069959246 @default.
- W3047492810 creator A5090265732 @default.
- W3047492810 date "2020-01-01" @default.
- W3047492810 modified "2023-10-18" @default.
- W3047492810 title "Multiple sclerosis lesion detection in multimodal MRI using simple clustering-based segmentation and classification" @default.
- W3047492810 cites W1973457617 @default.
- W3047492810 cites W1996595747 @default.
- W3047492810 cites W2021204548 @default.
- W3047492810 cites W2028094999 @default.
- W3047492810 cites W2031677665 @default.
- W3047492810 cites W2035053340 @default.
- W3047492810 cites W2085909714 @default.
- W3047492810 cites W2087328730 @default.
- W3047492810 cites W2105202736 @default.
- W3047492810 cites W2105947467 @default.
- W3047492810 cites W2113283292 @default.
- W3047492810 cites W2203963179 @default.
- W3047492810 cites W2485685300 @default.
- W3047492810 cites W2612505191 @default.
- W3047492810 cites W2895614609 @default.
- W3047492810 cites W2938235323 @default.
- W3047492810 cites W2964262389 @default.
- W3047492810 doi "https://doi.org/10.1016/j.imu.2020.100409" @default.
- W3047492810 hasPublicationYear "2020" @default.
- W3047492810 type Work @default.
- W3047492810 sameAs 3047492810 @default.
- W3047492810 citedByCount "8" @default.
- W3047492810 countsByYear W30474928102020 @default.
- W3047492810 countsByYear W30474928102021 @default.
- W3047492810 countsByYear W30474928102022 @default.
- W3047492810 countsByYear W30474928102023 @default.
- W3047492810 crossrefType "journal-article" @default.
- W3047492810 hasAuthorship W3047492810A5051887580 @default.
- W3047492810 hasAuthorship W3047492810A5069959246 @default.
- W3047492810 hasAuthorship W3047492810A5090265732 @default.
- W3047492810 hasBestOaLocation W30474928101 @default.
- W3047492810 hasConcept C101070640 @default.
- W3047492810 hasConcept C118552586 @default.
- W3047492810 hasConcept C126838900 @default.
- W3047492810 hasConcept C142724271 @default.
- W3047492810 hasConcept C143409427 @default.
- W3047492810 hasConcept C153180895 @default.
- W3047492810 hasConcept C154945302 @default.
- W3047492810 hasConcept C2780640218 @default.
- W3047492810 hasConcept C2781156865 @default.
- W3047492810 hasConcept C41008148 @default.
- W3047492810 hasConcept C71924100 @default.
- W3047492810 hasConcept C73555534 @default.
- W3047492810 hasConcept C89600930 @default.
- W3047492810 hasConceptScore W3047492810C101070640 @default.
- W3047492810 hasConceptScore W3047492810C118552586 @default.
- W3047492810 hasConceptScore W3047492810C126838900 @default.
- W3047492810 hasConceptScore W3047492810C142724271 @default.
- W3047492810 hasConceptScore W3047492810C143409427 @default.
- W3047492810 hasConceptScore W3047492810C153180895 @default.
- W3047492810 hasConceptScore W3047492810C154945302 @default.
- W3047492810 hasConceptScore W3047492810C2780640218 @default.
- W3047492810 hasConceptScore W3047492810C2781156865 @default.
- W3047492810 hasConceptScore W3047492810C41008148 @default.
- W3047492810 hasConceptScore W3047492810C71924100 @default.
- W3047492810 hasConceptScore W3047492810C73555534 @default.
- W3047492810 hasConceptScore W3047492810C89600930 @default.
- W3047492810 hasFunder F4320321961 @default.
- W3047492810 hasLocation W30474928101 @default.
- W3047492810 hasOpenAccess W3047492810 @default.
- W3047492810 hasPrimaryLocation W30474928101 @default.
- W3047492810 hasRelatedWork W2001364525 @default.
- W3047492810 hasRelatedWork W2026273577 @default.
- W3047492810 hasRelatedWork W2046279925 @default.
- W3047492810 hasRelatedWork W2056919748 @default.
- W3047492810 hasRelatedWork W2062532180 @default.
- W3047492810 hasRelatedWork W2165532981 @default.
- W3047492810 hasRelatedWork W2180241394 @default.
- W3047492810 hasRelatedWork W2365219015 @default.
- W3047492810 hasRelatedWork W2395410554 @default.
- W3047492810 hasRelatedWork W2400349113 @default.
- W3047492810 hasVolume "20" @default.
- W3047492810 isParatext "false" @default.
- W3047492810 isRetracted "false" @default.
- W3047492810 magId "3047492810" @default.
- W3047492810 workType "article" @default.