Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047506535> ?p ?o ?g. }
- W3047506535 endingPage "135" @default.
- W3047506535 startingPage "129" @default.
- W3047506535 abstract "Abstract Introduction Prediction of lymph node involvement (LNI) is of paramount importance for patients with prostate cancer (PCa) undergoing radical prostatectomy (RP). Multiple statistical models predicting LNI have been developed to support clinical decision-making regarding the need of extended pelvic lymph node dissection (ePLND). Our aim is to evaluate the prediction ability of the best-performing prediction tools for LNI in PCa in a Latin-American population. Methods Clinicopathological data of 830 patients with PCa who underwent RP and ePLND between 2007 and 2018 was obtained. Only data from patients who had ≥ 10 lymph nodes (LNs) harvested were included (n = 576 patients). Four prediction models were validated using this cohort: The Memorial Sloan Kettering Cancer Center (MSKCC) web calculator, Briganti v.2017, Yale formula and Partin tables v.2016. The performance of the prediction tools was assessed using the area under the receiver operating characteristic (ROC) curve (AUC). Results The median age was 61 years old (interquartile range [IQR] 56–66), the median Prostate specific antigen (PSA) was 6,81 ng/mL (IQR 4,8–10,1) and the median of LNs harvested was 17 (IQR 13–23), and LNI was identified in 53 patients (9.3%). Predictions from the 2017 Briganti nomogram AUC (0.85) and the Yale formula AUC (0.85) were the most accurate; MSKCC and 2016 Partin tables AUC were both 0,84. Conclusion There was no significant difference in the performance of the four validated prediction tools in a Latin-American population compared with the European or North American patients in whom these tools have been validated. Among the 4 models, the Briganti v.2017 and Yale formula yielded the best results, but the AUC overlapped with the other validated models." @default.
- W3047506535 created "2020-08-10" @default.
- W3047506535 creator A5008327698 @default.
- W3047506535 creator A5024130860 @default.
- W3047506535 creator A5029692332 @default.
- W3047506535 creator A5045943414 @default.
- W3047506535 creator A5048192417 @default.
- W3047506535 creator A5057197935 @default.
- W3047506535 creator A5082495417 @default.
- W3047506535 date "2020-08-04" @default.
- W3047506535 modified "2023-09-30" @default.
- W3047506535 title "Predicting the Probability of Lymph Node Involvement with Prostate Cancer Nomograms: Can We Trust the Prediction Models?" @default.
- W3047506535 cites W1259141303 @default.
- W3047506535 cites W1489617413 @default.
- W3047506535 cites W1972247309 @default.
- W3047506535 cites W1988053094 @default.
- W3047506535 cites W1996080642 @default.
- W3047506535 cites W1997192661 @default.
- W3047506535 cites W1998068623 @default.
- W3047506535 cites W2014420251 @default.
- W3047506535 cites W2016145602 @default.
- W3047506535 cites W2035507752 @default.
- W3047506535 cites W2037073425 @default.
- W3047506535 cites W2037762374 @default.
- W3047506535 cites W2063266750 @default.
- W3047506535 cites W2071811522 @default.
- W3047506535 cites W2074780088 @default.
- W3047506535 cites W2092185710 @default.
- W3047506535 cites W2100687606 @default.
- W3047506535 cites W2101913998 @default.
- W3047506535 cites W2115318189 @default.
- W3047506535 cites W2116692433 @default.
- W3047506535 cites W2142395600 @default.
- W3047506535 cites W2146141124 @default.
- W3047506535 cites W2172152967 @default.
- W3047506535 cites W2209481704 @default.
- W3047506535 cites W2224447831 @default.
- W3047506535 cites W2415424856 @default.
- W3047506535 cites W2461950892 @default.
- W3047506535 cites W2606159587 @default.
- W3047506535 cites W2806292892 @default.
- W3047506535 cites W2809735606 @default.
- W3047506535 doi "https://doi.org/10.1055/s-0040-1713378" @default.
- W3047506535 hasPublicationYear "2020" @default.
- W3047506535 type Work @default.
- W3047506535 sameAs 3047506535 @default.
- W3047506535 citedByCount "0" @default.
- W3047506535 crossrefType "journal-article" @default.
- W3047506535 hasAuthorship W3047506535A5008327698 @default.
- W3047506535 hasAuthorship W3047506535A5024130860 @default.
- W3047506535 hasAuthorship W3047506535A5029692332 @default.
- W3047506535 hasAuthorship W3047506535A5045943414 @default.
- W3047506535 hasAuthorship W3047506535A5048192417 @default.
- W3047506535 hasAuthorship W3047506535A5057197935 @default.
- W3047506535 hasAuthorship W3047506535A5082495417 @default.
- W3047506535 hasBestOaLocation W30475065351 @default.
- W3047506535 hasConcept C119060515 @default.
- W3047506535 hasConcept C121608353 @default.
- W3047506535 hasConcept C126322002 @default.
- W3047506535 hasConcept C126894567 @default.
- W3047506535 hasConcept C141071460 @default.
- W3047506535 hasConcept C143998085 @default.
- W3047506535 hasConcept C2779466945 @default.
- W3047506535 hasConcept C2780192828 @default.
- W3047506535 hasConcept C2780849966 @default.
- W3047506535 hasConcept C2908647359 @default.
- W3047506535 hasConcept C34626388 @default.
- W3047506535 hasConcept C58471807 @default.
- W3047506535 hasConcept C71924100 @default.
- W3047506535 hasConcept C99454951 @default.
- W3047506535 hasConceptScore W3047506535C119060515 @default.
- W3047506535 hasConceptScore W3047506535C121608353 @default.
- W3047506535 hasConceptScore W3047506535C126322002 @default.
- W3047506535 hasConceptScore W3047506535C126894567 @default.
- W3047506535 hasConceptScore W3047506535C141071460 @default.
- W3047506535 hasConceptScore W3047506535C143998085 @default.
- W3047506535 hasConceptScore W3047506535C2779466945 @default.
- W3047506535 hasConceptScore W3047506535C2780192828 @default.
- W3047506535 hasConceptScore W3047506535C2780849966 @default.
- W3047506535 hasConceptScore W3047506535C2908647359 @default.
- W3047506535 hasConceptScore W3047506535C34626388 @default.
- W3047506535 hasConceptScore W3047506535C58471807 @default.
- W3047506535 hasConceptScore W3047506535C71924100 @default.
- W3047506535 hasConceptScore W3047506535C99454951 @default.
- W3047506535 hasIssue "03" @default.
- W3047506535 hasLocation W30475065351 @default.
- W3047506535 hasLocation W30475065352 @default.
- W3047506535 hasOpenAccess W3047506535 @default.
- W3047506535 hasPrimaryLocation W30475065351 @default.
- W3047506535 hasRelatedWork W2019701250 @default.
- W3047506535 hasRelatedWork W2172257731 @default.
- W3047506535 hasRelatedWork W2305959020 @default.
- W3047506535 hasRelatedWork W2587028338 @default.
- W3047506535 hasRelatedWork W2611369470 @default.
- W3047506535 hasRelatedWork W2912912906 @default.
- W3047506535 hasRelatedWork W2942389067 @default.
- W3047506535 hasRelatedWork W2973010805 @default.
- W3047506535 hasRelatedWork W4283384264 @default.