Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047625747> ?p ?o ?g. }
- W3047625747 endingPage "101938" @default.
- W3047625747 startingPage "101938" @default.
- W3047625747 abstract "Generative adversarial networks (GANs) and their extensions have carved open many exciting ways to tackle well known and challenging medical image analysis problems such as medical image de-noising, reconstruction, segmentation, data simulation, detection or classification. Furthermore, their ability to synthesize images at unprecedented levels of realism also gives hope that the chronic scarcity of labeled data in the medical field can be resolved with the help of these generative models. In this review paper, a broad overview of recent literature on GANs for medical applications is given, the shortcomings and opportunities of the proposed methods are thoroughly discussed, and potential future work is elaborated. We review the most relevant papers published until the submission date. For quick access, essential details such as the underlying method, datasets, and performance are tabulated. An interactive visualization that categorizes all papers to keep the review alive is available at http://livingreview.in.tum.de/GANs_for_Medical_Applications/." @default.
- W3047625747 created "2020-08-13" @default.
- W3047625747 creator A5037953180 @default.
- W3047625747 creator A5042982766 @default.
- W3047625747 creator A5046597105 @default.
- W3047625747 creator A5046896448 @default.
- W3047625747 creator A5046955009 @default.
- W3047625747 creator A5081270742 @default.
- W3047625747 creator A5086393907 @default.
- W3047625747 date "2020-09-01" @default.
- W3047625747 modified "2023-10-17" @default.
- W3047625747 title "GANs for medical image analysis" @default.
- W3047625747 cites W2053614228 @default.
- W3047625747 cites W2163181242 @default.
- W3047625747 cites W2412782625 @default.
- W3047625747 cites W2562469482 @default.
- W3047625747 cites W2592929672 @default.
- W3047625747 cites W2593414223 @default.
- W3047625747 cites W2598666589 @default.
- W3047625747 cites W2599354622 @default.
- W3047625747 cites W2617128058 @default.
- W3047625747 cites W2735429996 @default.
- W3047625747 cites W2736462652 @default.
- W3047625747 cites W2743780012 @default.
- W3047625747 cites W2745006834 @default.
- W3047625747 cites W2751679535 @default.
- W3047625747 cites W2754289204 @default.
- W3047625747 cites W2755045970 @default.
- W3047625747 cites W2757201831 @default.
- W3047625747 cites W2759965110 @default.
- W3047625747 cites W2761299546 @default.
- W3047625747 cites W2765811365 @default.
- W3047625747 cites W2766611250 @default.
- W3047625747 cites W2771464104 @default.
- W3047625747 cites W2772926238 @default.
- W3047625747 cites W2778924750 @default.
- W3047625747 cites W2790091880 @default.
- W3047625747 cites W2794103425 @default.
- W3047625747 cites W2896797790 @default.
- W3047625747 cites W2911091074 @default.
- W3047625747 cites W2962793481 @default.
- W3047625747 cites W2962793691 @default.
- W3047625747 cites W2962878449 @default.
- W3047625747 cites W2962914239 @default.
- W3047625747 cites W2963073614 @default.
- W3047625747 cites W2963093980 @default.
- W3047625747 cites W2963194837 @default.
- W3047625747 cites W2963470893 @default.
- W3047625747 cites W2963803174 @default.
- W3047625747 cites W2963942586 @default.
- W3047625747 cites W2963971125 @default.
- W3047625747 cites W2964024004 @default.
- W3047625747 cites W2964261464 @default.
- W3047625747 cites W3103042993 @default.
- W3047625747 doi "https://doi.org/10.1016/j.artmed.2020.101938" @default.
- W3047625747 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34756215" @default.
- W3047625747 hasPublicationYear "2020" @default.
- W3047625747 type Work @default.
- W3047625747 sameAs 3047625747 @default.
- W3047625747 citedByCount "193" @default.
- W3047625747 countsByYear W30476257472019 @default.
- W3047625747 countsByYear W30476257472020 @default.
- W3047625747 countsByYear W30476257472021 @default.
- W3047625747 countsByYear W30476257472022 @default.
- W3047625747 countsByYear W30476257472023 @default.
- W3047625747 crossrefType "journal-article" @default.
- W3047625747 hasAuthorship W3047625747A5037953180 @default.
- W3047625747 hasAuthorship W3047625747A5042982766 @default.
- W3047625747 hasAuthorship W3047625747A5046597105 @default.
- W3047625747 hasAuthorship W3047625747A5046896448 @default.
- W3047625747 hasAuthorship W3047625747A5046955009 @default.
- W3047625747 hasAuthorship W3047625747A5081270742 @default.
- W3047625747 hasAuthorship W3047625747A5086393907 @default.
- W3047625747 hasBestOaLocation W30476257472 @default.
- W3047625747 hasConcept C115961682 @default.
- W3047625747 hasConcept C124504099 @default.
- W3047625747 hasConcept C154945302 @default.
- W3047625747 hasConcept C202444582 @default.
- W3047625747 hasConcept C2522767166 @default.
- W3047625747 hasConcept C33923547 @default.
- W3047625747 hasConcept C36464697 @default.
- W3047625747 hasConcept C39890363 @default.
- W3047625747 hasConcept C41008148 @default.
- W3047625747 hasConcept C89600930 @default.
- W3047625747 hasConcept C9652623 @default.
- W3047625747 hasConceptScore W3047625747C115961682 @default.
- W3047625747 hasConceptScore W3047625747C124504099 @default.
- W3047625747 hasConceptScore W3047625747C154945302 @default.
- W3047625747 hasConceptScore W3047625747C202444582 @default.
- W3047625747 hasConceptScore W3047625747C2522767166 @default.
- W3047625747 hasConceptScore W3047625747C33923547 @default.
- W3047625747 hasConceptScore W3047625747C36464697 @default.
- W3047625747 hasConceptScore W3047625747C39890363 @default.
- W3047625747 hasConceptScore W3047625747C41008148 @default.
- W3047625747 hasConceptScore W3047625747C89600930 @default.
- W3047625747 hasConceptScore W3047625747C9652623 @default.
- W3047625747 hasFunder F4320320875 @default.
- W3047625747 hasFunder F4320321114 @default.