Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047644501> ?p ?o ?g. }
- W3047644501 endingPage "4639" @default.
- W3047644501 startingPage "4629" @default.
- W3047644501 abstract "Deep learning has demonstrated significant potential in advancing state of the art in many problem domains, especially those benefiting from automated feature extraction. Yet, the methodology has seen limited adoption in the field of ligand-based virtual screening (LBVS) as traditional approaches typically require large, target-specific training sets, which limits their value in most prospective applications. Here, we report the development of a neural network architecture and a learning framework designed to yield a generally applicable tool for LBVS. Our approach uses the molecular graph as input and involves learning a representation that places compounds of similar biological profiles in close proximity within a hyperdimensional feature space; this is achieved by simultaneously leveraging historical screening data against a multitude of targets during training. Cosine distance between molecules in this space becomes a general similarity metric and can readily be used to rank order database compounds in LBVS workflows. We demonstrate the resulting model generalizes exceptionally well to compounds and targets not used in its training. In three commonly employed LBVS benchmarks, our method outperforms popular fingerprinting algorithms without the need for any target-specific training. Moreover, we show the learned representation yields superior performance in scaffold hopping tasks and is largely orthogonal to existing fingerprints. Summarily, we have developed and validated a framework for learning a molecular representation that is applicable to LBVS in a target-agnostic fashion, with as few as one query compound. Our approach can also enable organizations to generate additional value from large screening data repositories, and to this end we are making its implementation freely available at https://github.com/totient-bio/gatnn-vs." @default.
- W3047644501 created "2020-08-13" @default.
- W3047644501 creator A5002515845 @default.
- W3047644501 creator A5004992178 @default.
- W3047644501 creator A5009353468 @default.
- W3047644501 creator A5026608098 @default.
- W3047644501 creator A5090676338 @default.
- W3047644501 date "2020-08-07" @default.
- W3047644501 modified "2023-10-15" @default.
- W3047644501 title "Improved Scaffold Hopping in Ligand-Based Virtual Screening Using Neural Representation Learning" @default.
- W3047644501 cites W1677182931 @default.
- W3047644501 cites W1964513093 @default.
- W3047644501 cites W1988037271 @default.
- W3047644501 cites W1999491936 @default.
- W3047644501 cites W2008732224 @default.
- W3047644501 cites W2009000921 @default.
- W3047644501 cites W2016979469 @default.
- W3047644501 cites W2020118174 @default.
- W3047644501 cites W2021455197 @default.
- W3047644501 cites W2021574925 @default.
- W3047644501 cites W2021748110 @default.
- W3047644501 cites W2023004460 @default.
- W3047644501 cites W2024610405 @default.
- W3047644501 cites W2025135899 @default.
- W3047644501 cites W2027482274 @default.
- W3047644501 cites W2038310963 @default.
- W3047644501 cites W2038361288 @default.
- W3047644501 cites W2042007894 @default.
- W3047644501 cites W2055955780 @default.
- W3047644501 cites W2057213963 @default.
- W3047644501 cites W2060531713 @default.
- W3047644501 cites W2064440950 @default.
- W3047644501 cites W2070756053 @default.
- W3047644501 cites W2081322171 @default.
- W3047644501 cites W2085809352 @default.
- W3047644501 cites W2119512897 @default.
- W3047644501 cites W2120540345 @default.
- W3047644501 cites W2208203352 @default.
- W3047644501 cites W2215268165 @default.
- W3047644501 cites W2235675062 @default.
- W3047644501 cites W2290847742 @default.
- W3047644501 cites W2318311899 @default.
- W3047644501 cites W2326292210 @default.
- W3047644501 cites W2329014669 @default.
- W3047644501 cites W2412446857 @default.
- W3047644501 cites W2436108096 @default.
- W3047644501 cites W2558999090 @default.
- W3047644501 cites W2560677837 @default.
- W3047644501 cites W2562257444 @default.
- W3047644501 cites W2565684601 @default.
- W3047644501 cites W2582187633 @default.
- W3047644501 cites W2610646689 @default.
- W3047644501 cites W2735246657 @default.
- W3047644501 cites W2777416523 @default.
- W3047644501 cites W2805758713 @default.
- W3047644501 cites W2807010618 @default.
- W3047644501 cites W2894573731 @default.
- W3047644501 cites W2897493330 @default.
- W3047644501 cites W2899070097 @default.
- W3047644501 cites W2901476322 @default.
- W3047644501 cites W2903262661 @default.
- W3047644501 cites W2905012389 @default.
- W3047644501 cites W2919115771 @default.
- W3047644501 cites W2950128007 @default.
- W3047644501 cites W2951048875 @default.
- W3047644501 cites W2966357564 @default.
- W3047644501 cites W2968378480 @default.
- W3047644501 cites W2981405700 @default.
- W3047644501 cites W3000478925 @default.
- W3047644501 cites W3005009369 @default.
- W3047644501 cites W3103145119 @default.
- W3047644501 cites W4253161820 @default.
- W3047644501 doi "https://doi.org/10.1021/acs.jcim.0c00622" @default.
- W3047644501 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32786700" @default.
- W3047644501 hasPublicationYear "2020" @default.
- W3047644501 type Work @default.
- W3047644501 sameAs 3047644501 @default.
- W3047644501 citedByCount "13" @default.
- W3047644501 countsByYear W30476445012021 @default.
- W3047644501 countsByYear W30476445012022 @default.
- W3047644501 countsByYear W30476445012023 @default.
- W3047644501 crossrefType "journal-article" @default.
- W3047644501 hasAuthorship W3047644501A5002515845 @default.
- W3047644501 hasAuthorship W3047644501A5004992178 @default.
- W3047644501 hasAuthorship W3047644501A5009353468 @default.
- W3047644501 hasAuthorship W3047644501A5026608098 @default.
- W3047644501 hasAuthorship W3047644501A5090676338 @default.
- W3047644501 hasBestOaLocation W30476445012 @default.
- W3047644501 hasConcept C103278499 @default.
- W3047644501 hasConcept C115961682 @default.
- W3047644501 hasConcept C119857082 @default.
- W3047644501 hasConcept C154945302 @default.
- W3047644501 hasConcept C162324750 @default.
- W3047644501 hasConcept C176217482 @default.
- W3047644501 hasConcept C177212765 @default.
- W3047644501 hasConcept C17744445 @default.
- W3047644501 hasConcept C199539241 @default.
- W3047644501 hasConcept C202444582 @default.