Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047655929> ?p ?o ?g. }
- W3047655929 endingPage "106350" @default.
- W3047655929 startingPage "106350" @default.
- W3047655929 abstract "Abstract Clustering is a task used to group data from variegated sources, including Big Data, the Internet of Things, and social media. Density peaks clustering (DPC) has become a popular clustering technique for its simplicity and quality. However, DPC requires a proper subset of input data points to be selected as centers using a plot called “decision graph”. This manual specification adds subjectivity and instability, besides breaking the continuous flow of the algorithm. Automatic center detection approaches struggle with obtaining good results while avoiding to add parameters and complexity to the algorithm. We propose an approach to automatically determine cluster centers by detecting gaps between data points in a one-dimensional version of the decision graph; we detect these gaps heuristically by comparing the distance (difference) between pairs of consecutive points in terms of their gamma score. We tested our approach on synthetic and UCI data sets. Results show that the number of clusters is accurately predicted in comparison to other state-of-the-art methods using F-score and Adjusted Rand Index." @default.
- W3047655929 created "2020-08-13" @default.
- W3047655929 creator A5041864894 @default.
- W3047655929 creator A5089746406 @default.
- W3047655929 date "2020-10-01" @default.
- W3047655929 modified "2023-10-14" @default.
- W3047655929 title "Density peaks clustering with gap-based automatic center detection" @default.
- W3047655929 cites W1970586689 @default.
- W3047655929 cites W1977366836 @default.
- W3047655929 cites W1987799824 @default.
- W3047655929 cites W2006611586 @default.
- W3047655929 cites W2011430131 @default.
- W3047655929 cites W2057923756 @default.
- W3047655929 cites W2117346966 @default.
- W3047655929 cites W2153233077 @default.
- W3047655929 cites W2154137957 @default.
- W3047655929 cites W2154898948 @default.
- W3047655929 cites W2165835468 @default.
- W3047655929 cites W2221868786 @default.
- W3047655929 cites W2268194897 @default.
- W3047655929 cites W2272544077 @default.
- W3047655929 cites W2293520353 @default.
- W3047655929 cites W2301695553 @default.
- W3047655929 cites W2415890883 @default.
- W3047655929 cites W2467028315 @default.
- W3047655929 cites W2507499466 @default.
- W3047655929 cites W2524847239 @default.
- W3047655929 cites W2551714109 @default.
- W3047655929 cites W2559461457 @default.
- W3047655929 cites W2592474909 @default.
- W3047655929 cites W2601172051 @default.
- W3047655929 cites W2606083510 @default.
- W3047655929 cites W2618416470 @default.
- W3047655929 cites W2734337707 @default.
- W3047655929 cites W2737994327 @default.
- W3047655929 cites W2769177808 @default.
- W3047655929 cites W2785307610 @default.
- W3047655929 cites W2789456849 @default.
- W3047655929 cites W2797273848 @default.
- W3047655929 cites W2804388974 @default.
- W3047655929 cites W2811177556 @default.
- W3047655929 cites W2887102415 @default.
- W3047655929 cites W2897024124 @default.
- W3047655929 cites W2898541610 @default.
- W3047655929 cites W2911171945 @default.
- W3047655929 cites W2921385201 @default.
- W3047655929 cites W2941287836 @default.
- W3047655929 cites W2945887213 @default.
- W3047655929 cites W2949034001 @default.
- W3047655929 cites W2953618482 @default.
- W3047655929 cites W2956329120 @default.
- W3047655929 cites W2963966306 @default.
- W3047655929 cites W2964334946 @default.
- W3047655929 cites W2971342653 @default.
- W3047655929 cites W2971352445 @default.
- W3047655929 cites W2971828865 @default.
- W3047655929 cites W2981001919 @default.
- W3047655929 cites W2990584864 @default.
- W3047655929 cites W2992507359 @default.
- W3047655929 cites W2996318260 @default.
- W3047655929 cites W2999196706 @default.
- W3047655929 cites W3000057629 @default.
- W3047655929 cites W3025793945 @default.
- W3047655929 cites W3026191479 @default.
- W3047655929 cites W3174346562 @default.
- W3047655929 doi "https://doi.org/10.1016/j.knosys.2020.106350" @default.
- W3047655929 hasPublicationYear "2020" @default.
- W3047655929 type Work @default.
- W3047655929 sameAs 3047655929 @default.
- W3047655929 citedByCount "27" @default.
- W3047655929 countsByYear W30476559292021 @default.
- W3047655929 countsByYear W30476559292022 @default.
- W3047655929 countsByYear W30476559292023 @default.
- W3047655929 crossrefType "journal-article" @default.
- W3047655929 hasAuthorship W3047655929A5041864894 @default.
- W3047655929 hasAuthorship W3047655929A5089746406 @default.
- W3047655929 hasConcept C124101348 @default.
- W3047655929 hasConcept C154945302 @default.
- W3047655929 hasConcept C185592680 @default.
- W3047655929 hasConcept C2779463800 @default.
- W3047655929 hasConcept C41008148 @default.
- W3047655929 hasConcept C73555534 @default.
- W3047655929 hasConcept C8010536 @default.
- W3047655929 hasConceptScore W3047655929C124101348 @default.
- W3047655929 hasConceptScore W3047655929C154945302 @default.
- W3047655929 hasConceptScore W3047655929C185592680 @default.
- W3047655929 hasConceptScore W3047655929C2779463800 @default.
- W3047655929 hasConceptScore W3047655929C41008148 @default.
- W3047655929 hasConceptScore W3047655929C73555534 @default.
- W3047655929 hasConceptScore W3047655929C8010536 @default.
- W3047655929 hasLocation W30476559291 @default.
- W3047655929 hasOpenAccess W3047655929 @default.
- W3047655929 hasPrimaryLocation W30476559291 @default.
- W3047655929 hasRelatedWork W1849651648 @default.
- W3047655929 hasRelatedWork W1979871427 @default.
- W3047655929 hasRelatedWork W1999627569 @default.
- W3047655929 hasRelatedWork W2187506573 @default.
- W3047655929 hasRelatedWork W2348097614 @default.