Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047682040> ?p ?o ?g. }
- W3047682040 abstract "We consider the problem of reconstructing a function from a finite set of noise-corrupted samples. Two kernel algorithms are analyzed, namely kernel ridge regression and $varepsilon$-support vector regression. By assuming the ground-truth function belongs to the reproducing kernel Hilbert space of the chosen kernel, and the measurement noise affecting the dataset is bounded, we adopt an approximation theory viewpoint to establish textit{deterministic}, finite-sample error bounds for the two models. Finally, we discuss their connection with Gaussian processes and two numerical examples are provided. In establishing our inequalities, we hope to help bring the fields of non-parametric kernel learning and system identification for robust control closer to each other." @default.
- W3047682040 created "2020-08-13" @default.
- W3047682040 creator A5000850139 @default.
- W3047682040 creator A5012155644 @default.
- W3047682040 creator A5085117832 @default.
- W3047682040 date "2020-08-10" @default.
- W3047682040 modified "2023-10-01" @default.
- W3047682040 title "Deterministic error bounds for kernel-based learning techniques under bounded noise" @default.
- W3047682040 cites W120550985 @default.
- W3047682040 cites W1540155273 @default.
- W3047682040 cites W1560724230 @default.
- W3047682040 cites W1746819321 @default.
- W3047682040 cites W1986280275 @default.
- W3047682040 cites W2021065610 @default.
- W3047682040 cites W2053446076 @default.
- W3047682040 cites W2082988498 @default.
- W3047682040 cites W2092766760 @default.
- W3047682040 cites W2137796859 @default.
- W3047682040 cites W2166566250 @default.
- W3047682040 cites W2245151812 @default.
- W3047682040 cites W2275150912 @default.
- W3047682040 cites W2503024616 @default.
- W3047682040 cites W2756252287 @default.
- W3047682040 cites W2761832341 @default.
- W3047682040 cites W2783267460 @default.
- W3047682040 cites W2818855837 @default.
- W3047682040 cites W2880842812 @default.
- W3047682040 cites W2891949427 @default.
- W3047682040 cites W2892521964 @default.
- W3047682040 cites W2902423805 @default.
- W3047682040 cites W2903397918 @default.
- W3047682040 cites W2909812324 @default.
- W3047682040 cites W2912619267 @default.
- W3047682040 cites W2913243980 @default.
- W3047682040 cites W2946326058 @default.
- W3047682040 cites W2959570737 @default.
- W3047682040 cites W2970782456 @default.
- W3047682040 cites W2982725427 @default.
- W3047682040 cites W2991167521 @default.
- W3047682040 cites W2992833799 @default.
- W3047682040 cites W2995486512 @default.
- W3047682040 cites W2999151440 @default.
- W3047682040 cites W3001299140 @default.
- W3047682040 cites W3011595849 @default.
- W3047682040 cites W3013324456 @default.
- W3047682040 cites W3014195175 @default.
- W3047682040 cites W3014259150 @default.
- W3047682040 cites W3014803699 @default.
- W3047682040 cites W3017909395 @default.
- W3047682040 cites W3025528584 @default.
- W3047682040 cites W3103767811 @default.
- W3047682040 hasPublicationYear "2020" @default.
- W3047682040 type Work @default.
- W3047682040 sameAs 3047682040 @default.
- W3047682040 citedByCount "4" @default.
- W3047682040 countsByYear W30476820402020 @default.
- W3047682040 countsByYear W30476820402021 @default.
- W3047682040 crossrefType "posted-content" @default.
- W3047682040 hasAuthorship W3047682040A5000850139 @default.
- W3047682040 hasAuthorship W3047682040A5012155644 @default.
- W3047682040 hasAuthorship W3047682040A5085117832 @default.
- W3047682040 hasConcept C11413529 @default.
- W3047682040 hasConcept C115961682 @default.
- W3047682040 hasConcept C118615104 @default.
- W3047682040 hasConcept C122280245 @default.
- W3047682040 hasConcept C12267149 @default.
- W3047682040 hasConcept C134306372 @default.
- W3047682040 hasConcept C134517425 @default.
- W3047682040 hasConcept C154945302 @default.
- W3047682040 hasConcept C160446489 @default.
- W3047682040 hasConcept C195699287 @default.
- W3047682040 hasConcept C28826006 @default.
- W3047682040 hasConcept C33923547 @default.
- W3047682040 hasConcept C34388435 @default.
- W3047682040 hasConcept C41008148 @default.
- W3047682040 hasConcept C62799726 @default.
- W3047682040 hasConcept C74193536 @default.
- W3047682040 hasConcept C75866337 @default.
- W3047682040 hasConcept C80884492 @default.
- W3047682040 hasConcept C99498987 @default.
- W3047682040 hasConceptScore W3047682040C11413529 @default.
- W3047682040 hasConceptScore W3047682040C115961682 @default.
- W3047682040 hasConceptScore W3047682040C118615104 @default.
- W3047682040 hasConceptScore W3047682040C122280245 @default.
- W3047682040 hasConceptScore W3047682040C12267149 @default.
- W3047682040 hasConceptScore W3047682040C134306372 @default.
- W3047682040 hasConceptScore W3047682040C134517425 @default.
- W3047682040 hasConceptScore W3047682040C154945302 @default.
- W3047682040 hasConceptScore W3047682040C160446489 @default.
- W3047682040 hasConceptScore W3047682040C195699287 @default.
- W3047682040 hasConceptScore W3047682040C28826006 @default.
- W3047682040 hasConceptScore W3047682040C33923547 @default.
- W3047682040 hasConceptScore W3047682040C34388435 @default.
- W3047682040 hasConceptScore W3047682040C41008148 @default.
- W3047682040 hasConceptScore W3047682040C62799726 @default.
- W3047682040 hasConceptScore W3047682040C74193536 @default.
- W3047682040 hasConceptScore W3047682040C75866337 @default.
- W3047682040 hasConceptScore W3047682040C80884492 @default.
- W3047682040 hasConceptScore W3047682040C99498987 @default.
- W3047682040 hasLocation W30476820401 @default.