Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047704105> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3047704105 endingPage "e21173" @default.
- W3047704105 startingPage "e21173" @default.
- W3047704105 abstract "Background Compartmental models dominate epidemic modeling. Transmission parameters between compartments are typically estimated through stochastic parameterization processes that depends on detailed statistics of transmission characteristics, which are economically and resource-wise expensive to collect. Objective We aim to apply deep learning techniques as a lower data dependency alternative to estimate transmission parameters of a customized compartmental model, for the purpose of simulating the dynamics of the US coronavirus disease (COVID-19) epidemic and projecting its further development. Methods We constructed a compartmental model and developed a multistep deep learning methodology to estimate the model’s transmission parameters. We then fed the estimated transmission parameters to the model to predict development of the US COVID-19 epidemic for 35 and 42 days. Epidemics are considered suppressed when the basic reproduction number (R0) is less than 1. Results The deep learning–enhanced compartmental model predicts that R0 will fall to <1 around August 17-19, 2020, at which point the epidemic will effectively start to die out, and that the US “infected” population will peak around August 16-18, 2020, at 3,228,574 to 3,308,911 individual cases. The model also predicted that the number of accumulative confirmed cases will cross the 5 million mark around August 7, 2020. Conclusions Current compartmental models require stochastic parameterization to estimate the transmission parameters. These models’ effectiveness depends upon detailed statistics on transmission characteristics. As an alternative, deep learning techniques are effective in estimating these stochastic parameters with greatly reduced dependency on data particularity." @default.
- W3047704105 created "2020-08-13" @default.
- W3047704105 creator A5042455675 @default.
- W3047704105 date "2020-08-21" @default.
- W3047704105 modified "2023-10-18" @default.
- W3047704105 title "Dynamics and Development of the COVID-19 Epidemic in the United States: A Compartmental Model Enhanced With Deep Learning Techniques" @default.
- W3047704105 cites W1975462967 @default.
- W3047704105 cites W2001145844 @default.
- W3047704105 cites W2155418451 @default.
- W3047704105 cites W3001118548 @default.
- W3047704105 cites W3002108456 @default.
- W3047704105 cites W3003573988 @default.
- W3047704105 cites W3003668884 @default.
- W3047704105 cites W3005529452 @default.
- W3047704105 cites W3006834170 @default.
- W3047704105 cites W3007273493 @default.
- W3047704105 cites W3008090866 @default.
- W3047704105 cites W3008582897 @default.
- W3047704105 cites W3009041394 @default.
- W3047704105 cites W3010131837 @default.
- W3047704105 cites W3013165023 @default.
- W3047704105 cites W3013188135 @default.
- W3047704105 cites W3013594674 @default.
- W3047704105 cites W3016785135 @default.
- W3047704105 cites W3021923959 @default.
- W3047704105 cites W3033285830 @default.
- W3047704105 doi "https://doi.org/10.2196/21173" @default.
- W3047704105 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7451112" @default.
- W3047704105 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32763892" @default.
- W3047704105 hasPublicationYear "2020" @default.
- W3047704105 type Work @default.
- W3047704105 sameAs 3047704105 @default.
- W3047704105 citedByCount "17" @default.
- W3047704105 countsByYear W30477041052021 @default.
- W3047704105 countsByYear W30477041052022 @default.
- W3047704105 countsByYear W30477041052023 @default.
- W3047704105 crossrefType "journal-article" @default.
- W3047704105 hasAuthorship W3047704105A5042455675 @default.
- W3047704105 hasBestOaLocation W30477041051 @default.
- W3047704105 hasConcept C105795698 @default.
- W3047704105 hasConcept C108583219 @default.
- W3047704105 hasConcept C127491075 @default.
- W3047704105 hasConcept C142724271 @default.
- W3047704105 hasConcept C144024400 @default.
- W3047704105 hasConcept C149923435 @default.
- W3047704105 hasConcept C154945302 @default.
- W3047704105 hasConcept C1627819 @default.
- W3047704105 hasConcept C19768560 @default.
- W3047704105 hasConcept C204264503 @default.
- W3047704105 hasConcept C2779134260 @default.
- W3047704105 hasConcept C2908647359 @default.
- W3047704105 hasConcept C3008058167 @default.
- W3047704105 hasConcept C33923547 @default.
- W3047704105 hasConcept C41008148 @default.
- W3047704105 hasConcept C524204448 @default.
- W3047704105 hasConcept C71924100 @default.
- W3047704105 hasConcept C761482 @default.
- W3047704105 hasConcept C76155785 @default.
- W3047704105 hasConceptScore W3047704105C105795698 @default.
- W3047704105 hasConceptScore W3047704105C108583219 @default.
- W3047704105 hasConceptScore W3047704105C127491075 @default.
- W3047704105 hasConceptScore W3047704105C142724271 @default.
- W3047704105 hasConceptScore W3047704105C144024400 @default.
- W3047704105 hasConceptScore W3047704105C149923435 @default.
- W3047704105 hasConceptScore W3047704105C154945302 @default.
- W3047704105 hasConceptScore W3047704105C1627819 @default.
- W3047704105 hasConceptScore W3047704105C19768560 @default.
- W3047704105 hasConceptScore W3047704105C204264503 @default.
- W3047704105 hasConceptScore W3047704105C2779134260 @default.
- W3047704105 hasConceptScore W3047704105C2908647359 @default.
- W3047704105 hasConceptScore W3047704105C3008058167 @default.
- W3047704105 hasConceptScore W3047704105C33923547 @default.
- W3047704105 hasConceptScore W3047704105C41008148 @default.
- W3047704105 hasConceptScore W3047704105C524204448 @default.
- W3047704105 hasConceptScore W3047704105C71924100 @default.
- W3047704105 hasConceptScore W3047704105C761482 @default.
- W3047704105 hasConceptScore W3047704105C76155785 @default.
- W3047704105 hasIssue "8" @default.
- W3047704105 hasLocation W30477041051 @default.
- W3047704105 hasLocation W30477041052 @default.
- W3047704105 hasLocation W30477041053 @default.
- W3047704105 hasOpenAccess W3047704105 @default.
- W3047704105 hasPrimaryLocation W30477041051 @default.
- W3047704105 hasRelatedWork W1549718845 @default.
- W3047704105 hasRelatedWork W1698381576 @default.
- W3047704105 hasRelatedWork W2017669195 @default.
- W3047704105 hasRelatedWork W2353047014 @default.
- W3047704105 hasRelatedWork W2787791688 @default.
- W3047704105 hasRelatedWork W3039783441 @default.
- W3047704105 hasRelatedWork W3163183336 @default.
- W3047704105 hasRelatedWork W3195835097 @default.
- W3047704105 hasRelatedWork W4282842863 @default.
- W3047704105 hasRelatedWork W4307385600 @default.
- W3047704105 hasVolume "22" @default.
- W3047704105 isParatext "false" @default.
- W3047704105 isRetracted "false" @default.
- W3047704105 magId "3047704105" @default.
- W3047704105 workType "article" @default.