Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047764407> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3047764407 abstract "We describe an ab initio phonon Boltzmann transport equation (BTE) approach accounting for phonon-electron scattering in addition to the well-established phonon-phonon and isotope scatterings. The phonon BTE is linearized and can be exactly solved beyond the relaxation time approximation (RTA). We use this approach to study the lattice thermal conductivity (${ensuremath{kappa}}_{text{ph}}$) of molybdenum (Mo). ${ensuremath{kappa}}_{text{ph}}$ of Mo is found to possess several anomalous features: (1) like in another group VI element tungsten (W), ${ensuremath{kappa}}_{text{ph}}$, with a large value of 37 W ${mathrm{m}}^{ensuremath{-}1}$ ${mathrm{K}}^{ensuremath{-}1}$ at room temperature, follows weak temperature dependence due to interplay between phonon-phonon (ph-ph), phonon-electron (ph-el), and phonon-isotope (isotope) scatterings; and (2) compared with W, though Mo is much lighter in mass, Mo has a smaller ${ensuremath{kappa}}_{text{ph}}$. This is attributed to weaker interatomic bonding, larger isotope mixture, and larger density of states at Fermi level in Mo. In isotopically pure samples, ${ensuremath{kappa}}_{text{ph}}$ increases from 37 to 48 W ${mathrm{m}}^{ensuremath{-}1}$ ${mathrm{K}}^{ensuremath{-}1}$ at room temperature. Considering the similarity of the phonon dispersion, our work suggests that chromium should also have a large ${ensuremath{kappa}}_{text{ph}}$, which, rather than the complexity of the electronic band structure argued in the literature, accounts for the significant deviation of measured Lorenz number $L$ from the expected Sommerfeld value. The electrical conductivity ($ensuremath{sigma}$) and electronic thermal conductivity (${ensuremath{kappa}}_{text{e}}$) of Mo are also calculated by using an ab initio electron BTE approach. $ensuremath{sigma}$ and the total thermal conductivity ($ensuremath{kappa}$) agree with the experimental data reasonably. These results demonstrate that the ab initio calculations can quantify the lattice and electronic contributions to $ensuremath{kappa}$. We also look into the cumulative $ensuremath{sigma}$ and ${ensuremath{kappa}}_{text{ph}}$ with respect to electron and phonon mean free paths (MFPs), respectively, in order to reveal the size effect in Mo. The MFPs of electrons contributing to conductivity range from 5 to 22 nm, whereas the MFPs of phonons primarily distribute between 5 and 73 nm with more than 80% contribution to ${ensuremath{kappa}}_{text{ph}}$. This suggests that a reduced Lorenz number can be observed in Mo nanostructures when the relevant size goes below $ensuremath{sim}70$ nm." @default.
- W3047764407 created "2020-08-13" @default.
- W3047764407 creator A5004640305 @default.
- W3047764407 creator A5005542093 @default.
- W3047764407 creator A5008130846 @default.
- W3047764407 creator A5083721752 @default.
- W3047764407 date "2020-08-05" @default.
- W3047764407 modified "2023-10-14" @default.
- W3047764407 title "Large lattice thermal conductivity, interplay between phonon-phonon, phonon-electron, and phonon-isotope scatterings, and electrical transport in molybdenum from first principles" @default.
- W3047764407 cites W1970482456 @default.
- W3047764407 cites W1976178246 @default.
- W3047764407 cites W1979544533 @default.
- W3047764407 cites W1981368803 @default.
- W3047764407 cites W2002557334 @default.
- W3047764407 cites W2017347525 @default.
- W3047764407 cites W2019622232 @default.
- W3047764407 cites W2024955068 @default.
- W3047764407 cites W2045596260 @default.
- W3047764407 cites W2049079467 @default.
- W3047764407 cites W2050892740 @default.
- W3047764407 cites W2067677447 @default.
- W3047764407 cites W2068658090 @default.
- W3047764407 cites W2081870935 @default.
- W3047764407 cites W2083222334 @default.
- W3047764407 cites W2088043604 @default.
- W3047764407 cites W2089967172 @default.
- W3047764407 cites W2090077753 @default.
- W3047764407 cites W2120145199 @default.
- W3047764407 cites W2142707065 @default.
- W3047764407 cites W2151034605 @default.
- W3047764407 cites W2156485711 @default.
- W3047764407 cites W2281209855 @default.
- W3047764407 cites W2282942319 @default.
- W3047764407 cites W2321003472 @default.
- W3047764407 cites W2332277637 @default.
- W3047764407 cites W2339223279 @default.
- W3047764407 cites W2430173869 @default.
- W3047764407 cites W2474943414 @default.
- W3047764407 cites W2509061368 @default.
- W3047764407 cites W2540482047 @default.
- W3047764407 cites W2567618578 @default.
- W3047764407 cites W2744412604 @default.
- W3047764407 cites W2766293554 @default.
- W3047764407 cites W2781510949 @default.
- W3047764407 cites W2898466932 @default.
- W3047764407 cites W2912681092 @default.
- W3047764407 cites W2940657799 @default.
- W3047764407 cites W2941921406 @default.
- W3047764407 cites W2955769218 @default.
- W3047764407 cites W2970192351 @default.
- W3047764407 cites W2980153946 @default.
- W3047764407 cites W3014108148 @default.
- W3047764407 doi "https://doi.org/10.1103/physrevb.102.064303" @default.
- W3047764407 hasPublicationYear "2020" @default.
- W3047764407 type Work @default.
- W3047764407 sameAs 3047764407 @default.
- W3047764407 citedByCount "12" @default.
- W3047764407 countsByYear W30477644072021 @default.
- W3047764407 countsByYear W30477644072022 @default.
- W3047764407 countsByYear W30477644072023 @default.
- W3047764407 crossrefType "journal-article" @default.
- W3047764407 hasAuthorship W3047764407A5004640305 @default.
- W3047764407 hasAuthorship W3047764407A5005542093 @default.
- W3047764407 hasAuthorship W3047764407A5008130846 @default.
- W3047764407 hasAuthorship W3047764407A5083721752 @default.
- W3047764407 hasConcept C121332964 @default.
- W3047764407 hasConcept C24169881 @default.
- W3047764407 hasConcept C26873012 @default.
- W3047764407 hasConcept C97346530 @default.
- W3047764407 hasConcept C97355855 @default.
- W3047764407 hasConceptScore W3047764407C121332964 @default.
- W3047764407 hasConceptScore W3047764407C24169881 @default.
- W3047764407 hasConceptScore W3047764407C26873012 @default.
- W3047764407 hasConceptScore W3047764407C97346530 @default.
- W3047764407 hasConceptScore W3047764407C97355855 @default.
- W3047764407 hasFunder F4320321001 @default.
- W3047764407 hasFunder F4320321921 @default.
- W3047764407 hasFunder F4320326705 @default.
- W3047764407 hasIssue "6" @default.
- W3047764407 hasLocation W30477644071 @default.
- W3047764407 hasOpenAccess W3047764407 @default.
- W3047764407 hasPrimaryLocation W30477644071 @default.
- W3047764407 hasRelatedWork W1965106109 @default.
- W3047764407 hasRelatedWork W1985135053 @default.
- W3047764407 hasRelatedWork W2007761683 @default.
- W3047764407 hasRelatedWork W2014198189 @default.
- W3047764407 hasRelatedWork W2029257636 @default.
- W3047764407 hasRelatedWork W2032025477 @default.
- W3047764407 hasRelatedWork W2041171540 @default.
- W3047764407 hasRelatedWork W2141465436 @default.
- W3047764407 hasRelatedWork W2358077366 @default.
- W3047764407 hasRelatedWork W3178707483 @default.
- W3047764407 hasVolume "102" @default.
- W3047764407 isParatext "false" @default.
- W3047764407 isRetracted "false" @default.
- W3047764407 magId "3047764407" @default.
- W3047764407 workType "article" @default.