Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047767573> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3047767573 endingPage "201" @default.
- W3047767573 startingPage "201.2" @default.
- W3047767573 abstract "Background: Within the last decade, rapid development of artificial neural networks and machine reading programs and their introduction into medical practice is reported [1,2,3]. Recently, an innovative program, based on the artificial intelligence (AI) technologies (a neural network and machine reading) that analyses knee X-ray images for determining the radiographic stage of OA was created. It was launched on the Osteoscan.ru website and is available for use by patients and doctors. Objectives: to validate the system ability to accurately stage OA through machine interpretation of standard knee radiographs. Methods: Initially, 1300 x-rays of both knee joints where used to teach the neural network. Of these, 350 were presented in the form of film scans, 950 in the DICOM format. The accuracy of the system in recognition of OA stage by knee radiographs was evaluated on a quality control sample of 130 cases (of all 1300). Independently, the radiographs were assessed by certified radiologists (considered the “gold standard”) and the System. Results: In 124 out of 130 cases the conclusion of a specialist and the System was the same, which represents 95.4% predictive power. Coincidence or discrepancy is a qualitative attribute, so, the accuracy of the estimation was calculated. Assuming a discrepancy of 0, and coincidence - of 1, µ = 0,954, the standard error s p = 1.8%. It can be concluded that in 95% of cases the accuracy of the system assessment will be in the range from 91.8% to 99%. Conclusion: Osteosan is a program developed on the base of AI technologies, analyzes radiographic images of the knee joints for determining OA stage. It provides high accuracy in OA stage determining by assessing knee radiographs, in 95% of cases, the accuracy of the system varies from 91.8% to 99%. References: [1]Fischl B, Salat DH, van der Kouwe AJ, Makris N, Ségonne F, Quinn BT, Dale AM. Sequence-independent segmentation of magnetic resonance images. Neuroimage. 2004;23 Suppl 1:S69-84 [2]Faust O, Acharya U R, Ng EY, Ng KH, Suri JS. Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J Med Syst. 2012; 36(1): 145-57. [3]Balyen L, Peto T. Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. Asia Pac J Ophthalmol (Phila). 2019; 8(3): 264-272. Disclosure of Interests: Olga Georginova Speakers bureau: GlaxoSmithKline Consumer Healthcare, Margarita Kobzar Employee of: GSK Consumer Healthcare" @default.
- W3047767573 created "2020-08-13" @default.
- W3047767573 creator A5060736058 @default.
- W3047767573 creator A5072084958 @default.
- W3047767573 date "2020-06-01" @default.
- W3047767573 modified "2023-09-25" @default.
- W3047767573 title "OP0327 EVALUATION OF THE ARTIFICIAL INTELLIGENCE SYSTEM ACCURACY IN DETERMINING THE RADIOGRAPHIC STAGE OF KNEE OSTEOARTHRITIS" @default.
- W3047767573 doi "https://doi.org/10.1136/annrheumdis-2020-eular.4424" @default.
- W3047767573 hasPublicationYear "2020" @default.
- W3047767573 type Work @default.
- W3047767573 sameAs 3047767573 @default.
- W3047767573 citedByCount "0" @default.
- W3047767573 crossrefType "journal-article" @default.
- W3047767573 hasAuthorship W3047767573A5060736058 @default.
- W3047767573 hasAuthorship W3047767573A5072084958 @default.
- W3047767573 hasBestOaLocation W30477675731 @default.
- W3047767573 hasConcept C119857082 @default.
- W3047767573 hasConcept C126838900 @default.
- W3047767573 hasConcept C142724271 @default.
- W3047767573 hasConcept C146357865 @default.
- W3047767573 hasConcept C151730666 @default.
- W3047767573 hasConcept C154945302 @default.
- W3047767573 hasConcept C19527891 @default.
- W3047767573 hasConcept C204787440 @default.
- W3047767573 hasConcept C2776164576 @default.
- W3047767573 hasConcept C30112582 @default.
- W3047767573 hasConcept C36454342 @default.
- W3047767573 hasConcept C40993552 @default.
- W3047767573 hasConcept C41008148 @default.
- W3047767573 hasConcept C50644808 @default.
- W3047767573 hasConcept C71924100 @default.
- W3047767573 hasConcept C77331912 @default.
- W3047767573 hasConcept C81363708 @default.
- W3047767573 hasConcept C86803240 @default.
- W3047767573 hasConceptScore W3047767573C119857082 @default.
- W3047767573 hasConceptScore W3047767573C126838900 @default.
- W3047767573 hasConceptScore W3047767573C142724271 @default.
- W3047767573 hasConceptScore W3047767573C146357865 @default.
- W3047767573 hasConceptScore W3047767573C151730666 @default.
- W3047767573 hasConceptScore W3047767573C154945302 @default.
- W3047767573 hasConceptScore W3047767573C19527891 @default.
- W3047767573 hasConceptScore W3047767573C204787440 @default.
- W3047767573 hasConceptScore W3047767573C2776164576 @default.
- W3047767573 hasConceptScore W3047767573C30112582 @default.
- W3047767573 hasConceptScore W3047767573C36454342 @default.
- W3047767573 hasConceptScore W3047767573C40993552 @default.
- W3047767573 hasConceptScore W3047767573C41008148 @default.
- W3047767573 hasConceptScore W3047767573C50644808 @default.
- W3047767573 hasConceptScore W3047767573C71924100 @default.
- W3047767573 hasConceptScore W3047767573C77331912 @default.
- W3047767573 hasConceptScore W3047767573C81363708 @default.
- W3047767573 hasConceptScore W3047767573C86803240 @default.
- W3047767573 hasIssue "Suppl 1" @default.
- W3047767573 hasLocation W30477675731 @default.
- W3047767573 hasOpenAccess W3047767573 @default.
- W3047767573 hasPrimaryLocation W30477675731 @default.
- W3047767573 hasRelatedWork W2137188394 @default.
- W3047767573 hasRelatedWork W2337926734 @default.
- W3047767573 hasRelatedWork W2401882374 @default.
- W3047767573 hasRelatedWork W3027997911 @default.
- W3047767573 hasRelatedWork W3090156234 @default.
- W3047767573 hasRelatedWork W4200415612 @default.
- W3047767573 hasRelatedWork W4287776258 @default.
- W3047767573 hasRelatedWork W4312501200 @default.
- W3047767573 hasRelatedWork W4366224123 @default.
- W3047767573 hasRelatedWork W1629725936 @default.
- W3047767573 hasVolume "79" @default.
- W3047767573 isParatext "false" @default.
- W3047767573 isRetracted "false" @default.
- W3047767573 magId "3047767573" @default.
- W3047767573 workType "article" @default.