Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047769503> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3047769503 endingPage "366" @default.
- W3047769503 startingPage "352" @default.
- W3047769503 abstract "Accurate and automatic vegetation extraction from digital plant images in the field is a widely studied topic in precision agriculture. Many techniques focus on pixels or regions to be segmented as plants or back-grounds, such as colour index-based and learning-based methods. Different from a traditional two-class classification problem, the proposed method regarded vegetation extraction as a multi-class task. In consideration of manually annotated errors at the edge of a plant image, the original marked mask was re-labelled using a Gaussian probability function. To capture more adequate information in the process of feature extraction, 9 pixel-level colour features and 18 region-level statistical characteristics of neighbourhood pixels were computed from three colour spaces. The extracted 27-dimensional features were inputs of a classification model, which output multi-class labels. A suitable threshold was finally selected to obtain the segmented image. Experimental results showed that the proposed multi-class and multi-level features (MCMLF) method achieved better performance than the other approaches. Through the quantitative and qualitative analysis of segmentation results, it was also found that the suggested method had high computation efficiency as well as strong adaptation ability to solve the outdoor challenges, including various lighting conditions, shadow regions, and complex backgrounds. • Vegetation extraction is regarded as a multi-class recognition task. • Pixel-level and region-level features are extracted from three colour spaces. • The method has high computation efficiency as well as strong adaptation ability." @default.
- W3047769503 created "2020-08-13" @default.
- W3047769503 creator A5002765832 @default.
- W3047769503 creator A5013736647 @default.
- W3047769503 creator A5072633868 @default.
- W3047769503 date "2020-09-01" @default.
- W3047769503 modified "2023-09-24" @default.
- W3047769503 title "Vegetation extraction in the field using multi-level features" @default.
- W3047769503 cites W1162739052 @default.
- W3047769503 cites W1989863789 @default.
- W3047769503 cites W2010100561 @default.
- W3047769503 cites W2018724743 @default.
- W3047769503 cites W2039952872 @default.
- W3047769503 cites W2044651338 @default.
- W3047769503 cites W2055186043 @default.
- W3047769503 cites W2063155154 @default.
- W3047769503 cites W2084320908 @default.
- W3047769503 cites W2084325791 @default.
- W3047769503 cites W2091745481 @default.
- W3047769503 cites W2093020519 @default.
- W3047769503 cites W2094976293 @default.
- W3047769503 cites W2128866545 @default.
- W3047769503 cites W2185313191 @default.
- W3047769503 cites W2278786050 @default.
- W3047769503 cites W2300198213 @default.
- W3047769503 cites W2345408812 @default.
- W3047769503 cites W2394911398 @default.
- W3047769503 cites W2510284721 @default.
- W3047769503 cites W2515964264 @default.
- W3047769503 cites W2569479441 @default.
- W3047769503 cites W2594584504 @default.
- W3047769503 cites W2731518524 @default.
- W3047769503 cites W2739413041 @default.
- W3047769503 cites W2741922878 @default.
- W3047769503 cites W2769625730 @default.
- W3047769503 cites W2796150704 @default.
- W3047769503 cites W2809666330 @default.
- W3047769503 doi "https://doi.org/10.1016/j.biosystemseng.2020.07.013" @default.
- W3047769503 hasPublicationYear "2020" @default.
- W3047769503 type Work @default.
- W3047769503 sameAs 3047769503 @default.
- W3047769503 citedByCount "3" @default.
- W3047769503 countsByYear W30477695032022 @default.
- W3047769503 crossrefType "journal-article" @default.
- W3047769503 hasAuthorship W3047769503A5002765832 @default.
- W3047769503 hasAuthorship W3047769503A5013736647 @default.
- W3047769503 hasAuthorship W3047769503A5072633868 @default.
- W3047769503 hasConcept C11413529 @default.
- W3047769503 hasConcept C117797892 @default.
- W3047769503 hasConcept C124504099 @default.
- W3047769503 hasConcept C153180895 @default.
- W3047769503 hasConcept C154945302 @default.
- W3047769503 hasConcept C15744967 @default.
- W3047769503 hasConcept C160633673 @default.
- W3047769503 hasConcept C202444582 @default.
- W3047769503 hasConcept C31972630 @default.
- W3047769503 hasConcept C33923547 @default.
- W3047769503 hasConcept C41008148 @default.
- W3047769503 hasConcept C45374587 @default.
- W3047769503 hasConcept C52622490 @default.
- W3047769503 hasConcept C542102704 @default.
- W3047769503 hasConcept C89600930 @default.
- W3047769503 hasConcept C9652623 @default.
- W3047769503 hasConceptScore W3047769503C11413529 @default.
- W3047769503 hasConceptScore W3047769503C117797892 @default.
- W3047769503 hasConceptScore W3047769503C124504099 @default.
- W3047769503 hasConceptScore W3047769503C153180895 @default.
- W3047769503 hasConceptScore W3047769503C154945302 @default.
- W3047769503 hasConceptScore W3047769503C15744967 @default.
- W3047769503 hasConceptScore W3047769503C160633673 @default.
- W3047769503 hasConceptScore W3047769503C202444582 @default.
- W3047769503 hasConceptScore W3047769503C31972630 @default.
- W3047769503 hasConceptScore W3047769503C33923547 @default.
- W3047769503 hasConceptScore W3047769503C41008148 @default.
- W3047769503 hasConceptScore W3047769503C45374587 @default.
- W3047769503 hasConceptScore W3047769503C52622490 @default.
- W3047769503 hasConceptScore W3047769503C542102704 @default.
- W3047769503 hasConceptScore W3047769503C89600930 @default.
- W3047769503 hasConceptScore W3047769503C9652623 @default.
- W3047769503 hasFunder F4320321540 @default.
- W3047769503 hasLocation W30477695031 @default.
- W3047769503 hasOpenAccess W3047769503 @default.
- W3047769503 hasPrimaryLocation W30477695031 @default.
- W3047769503 hasRelatedWork W1643724255 @default.
- W3047769503 hasRelatedWork W1669643531 @default.
- W3047769503 hasRelatedWork W2001690127 @default.
- W3047769503 hasRelatedWork W2034462085 @default.
- W3047769503 hasRelatedWork W2096823343 @default.
- W3047769503 hasRelatedWork W2122581818 @default.
- W3047769503 hasRelatedWork W2141888456 @default.
- W3047769503 hasRelatedWork W2157617877 @default.
- W3047769503 hasRelatedWork W2739874619 @default.
- W3047769503 hasRelatedWork W317572212 @default.
- W3047769503 hasVolume "197" @default.
- W3047769503 isParatext "false" @default.
- W3047769503 isRetracted "false" @default.
- W3047769503 magId "3047769503" @default.
- W3047769503 workType "article" @default.