Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047935850> ?p ?o ?g. }
- W3047935850 abstract "The continuously growing amount of seismic data collected worldwide is outpacing our abilities for analysis, since to date, such datasets have been analyzed in a human-expert-intensive, supervised fashion. Moreover, analyses that are conducted can be strongly biased by the standard models employed by seismologists. In response to both of these challenges, we develop a new unsupervised machine learning framework for detecting and clustering seismic signals in continuous seismic records. Our approach combines a deep scattering network and a Gaussian mixture model to cluster seismic signal segments and detect novel structures. To illustrate the power of the framework, we analyze seismic data acquired during the June 2017 Nuugaatsiaq, Greenland landslide. We demonstrate the blind detection and recovery of the repeating precursory seismicity that was recorded before the main landslide rupture, which suggests that our approach could lead to more informative forecasting of the seismic activity in seismogenic areas." @default.
- W3047935850 created "2020-08-13" @default.
- W3047935850 creator A5012956955 @default.
- W3047935850 creator A5020379766 @default.
- W3047935850 creator A5046672035 @default.
- W3047935850 creator A5047293370 @default.
- W3047935850 creator A5072713767 @default.
- W3047935850 creator A5086162214 @default.
- W3047935850 date "2020-08-07" @default.
- W3047935850 modified "2023-10-11" @default.
- W3047935850 title "Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning" @default.
- W3047935850 cites W1544657794 @default.
- W3047935850 cites W170362864 @default.
- W3047935850 cites W1970831581 @default.
- W3047935850 cites W1998871699 @default.
- W3047935850 cites W2054274648 @default.
- W3047935850 cites W2064987371 @default.
- W3047935850 cites W2072072671 @default.
- W3047935850 cites W2080447864 @default.
- W3047935850 cites W2093231248 @default.
- W3047935850 cites W2098085861 @default.
- W3047935850 cites W2099081746 @default.
- W3047935850 cites W2102919512 @default.
- W3047935850 cites W2111129459 @default.
- W3047935850 cites W2112953047 @default.
- W3047935850 cites W2126100478 @default.
- W3047935850 cites W2132914434 @default.
- W3047935850 cites W2134199473 @default.
- W3047935850 cites W2136418253 @default.
- W3047935850 cites W2148618863 @default.
- W3047935850 cites W2149407554 @default.
- W3047935850 cites W2154597056 @default.
- W3047935850 cites W2154833897 @default.
- W3047935850 cites W2156447271 @default.
- W3047935850 cites W2252531811 @default.
- W3047935850 cites W2398851514 @default.
- W3047935850 cites W2591785839 @default.
- W3047935850 cites W2594559052 @default.
- W3047935850 cites W2753906587 @default.
- W3047935850 cites W2762410434 @default.
- W3047935850 cites W2788133495 @default.
- W3047935850 cites W2793454338 @default.
- W3047935850 cites W2798961812 @default.
- W3047935850 cites W2800073776 @default.
- W3047935850 cites W2804318074 @default.
- W3047935850 cites W2804730645 @default.
- W3047935850 cites W2923222994 @default.
- W3047935850 cites W2943227802 @default.
- W3047935850 cites W3124928229 @default.
- W3047935850 cites W4240948499 @default.
- W3047935850 cites W4242546747 @default.
- W3047935850 doi "https://doi.org/10.1038/s41467-020-17841-x" @default.
- W3047935850 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7414231" @default.
- W3047935850 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32769972" @default.
- W3047935850 hasPublicationYear "2020" @default.
- W3047935850 type Work @default.
- W3047935850 sameAs 3047935850 @default.
- W3047935850 citedByCount "69" @default.
- W3047935850 countsByYear W30479358502020 @default.
- W3047935850 countsByYear W30479358502021 @default.
- W3047935850 countsByYear W30479358502022 @default.
- W3047935850 countsByYear W30479358502023 @default.
- W3047935850 crossrefType "journal-article" @default.
- W3047935850 hasAuthorship W3047935850A5012956955 @default.
- W3047935850 hasAuthorship W3047935850A5020379766 @default.
- W3047935850 hasAuthorship W3047935850A5046672035 @default.
- W3047935850 hasAuthorship W3047935850A5047293370 @default.
- W3047935850 hasAuthorship W3047935850A5072713767 @default.
- W3047935850 hasAuthorship W3047935850A5086162214 @default.
- W3047935850 hasBestOaLocation W30479358501 @default.
- W3047935850 hasConcept C124101348 @default.
- W3047935850 hasConcept C127313418 @default.
- W3047935850 hasConcept C153180895 @default.
- W3047935850 hasConcept C154945302 @default.
- W3047935850 hasConcept C165205528 @default.
- W3047935850 hasConcept C199360897 @default.
- W3047935850 hasConcept C2779843651 @default.
- W3047935850 hasConcept C41008148 @default.
- W3047935850 hasConcept C73555534 @default.
- W3047935850 hasConcept C8038995 @default.
- W3047935850 hasConcept C83176761 @default.
- W3047935850 hasConceptScore W3047935850C124101348 @default.
- W3047935850 hasConceptScore W3047935850C127313418 @default.
- W3047935850 hasConceptScore W3047935850C153180895 @default.
- W3047935850 hasConceptScore W3047935850C154945302 @default.
- W3047935850 hasConceptScore W3047935850C165205528 @default.
- W3047935850 hasConceptScore W3047935850C199360897 @default.
- W3047935850 hasConceptScore W3047935850C2779843651 @default.
- W3047935850 hasConceptScore W3047935850C41008148 @default.
- W3047935850 hasConceptScore W3047935850C73555534 @default.
- W3047935850 hasConceptScore W3047935850C8038995 @default.
- W3047935850 hasConceptScore W3047935850C83176761 @default.
- W3047935850 hasIssue "1" @default.
- W3047935850 hasLocation W30479358501 @default.
- W3047935850 hasLocation W304793585010 @default.
- W3047935850 hasLocation W304793585011 @default.
- W3047935850 hasLocation W304793585012 @default.
- W3047935850 hasLocation W30479358502 @default.
- W3047935850 hasLocation W30479358503 @default.
- W3047935850 hasLocation W30479358504 @default.