Matches in SemOpenAlex for { <https://semopenalex.org/work/W3047969938> ?p ?o ?g. }
- W3047969938 abstract "The age of precision medicine demands powerful computational techniques to handle high-dimensional patient data. We present MultiSurv, a multimodal deep learning method for long-term pan-cancer survival prediction. MultiSurv is composed of three main modules. A feature representation module includes a dedicated submodel for each input data modality. A data fusion layer aggregates the multimodal representations. Finally, a prediction submodel yields conditional survival probabilities for a predefined set of follow-up time intervals. We trained MultiSurv on clinical, imaging, and four different high-dimensional omics data modalities from patients diagnosed with one of 33 different cancer types. We evaluated unimodal input configurations against several previous methods and different multimodal data combinations. MultiSurv achieved the best results according to different time-dependent metrics and delivered highly accurate long-term patient survival curves. The best performance was obtained when combining clinical information with either gene expression or DNA methylation data, depending on the evaluation metric. Additionally, MultiSurv can handle missing data, including missing values and complete data modalitites. Interestingly, for unimodal data we found that simpler modeling approaches, including the classical Cox proportional hazards method, can achieve results rivaling those of more complex methods for certain data modalities. We also show how the learned feature representations of MultiSurv can be used to visualize relationships between cancer types and individual patients, after embedding into a low-dimensional space." @default.
- W3047969938 created "2020-08-13" @default.
- W3047969938 creator A5035415553 @default.
- W3047969938 creator A5065703260 @default.
- W3047969938 date "2020-08-07" @default.
- W3047969938 modified "2023-10-18" @default.
- W3047969938 title "MultiSurv: Long-term cancer survival prediction using multimodal deep learning" @default.
- W3047969938 cites W1819957961 @default.
- W3047969938 cites W1965092590 @default.
- W3047969938 cites W1965134014 @default.
- W3047969938 cites W2000703258 @default.
- W3047969938 cites W2004655916 @default.
- W3047969938 cites W2060300932 @default.
- W3047969938 cites W2084139018 @default.
- W3047969938 cites W2108673310 @default.
- W3047969938 cites W2117539524 @default.
- W3047969938 cites W2125527920 @default.
- W3047969938 cites W2158485828 @default.
- W3047969938 cites W2342249984 @default.
- W3047969938 cites W2521492299 @default.
- W3047969938 cites W2549139847 @default.
- W3047969938 cites W2568702864 @default.
- W3047969938 cites W2619383789 @default.
- W3047969938 cites W2745940724 @default.
- W3047969938 cites W2753919178 @default.
- W3047969938 cites W2761668583 @default.
- W3047969938 cites W2797883881 @default.
- W3047969938 cites W2798890825 @default.
- W3047969938 cites W2889646458 @default.
- W3047969938 cites W2905810301 @default.
- W3047969938 cites W2906311950 @default.
- W3047969938 cites W2907936961 @default.
- W3047969938 cites W2919115771 @default.
- W3047969938 cites W2921485464 @default.
- W3047969938 cites W2921566548 @default.
- W3047969938 cites W2928673187 @default.
- W3047969938 cites W2946165673 @default.
- W3047969938 cites W2954499361 @default.
- W3047969938 cites W2963300950 @default.
- W3047969938 cites W2976952765 @default.
- W3047969938 cites W3009535750 @default.
- W3047969938 cites W3009926465 @default.
- W3047969938 cites W3011327820 @default.
- W3047969938 cites W3027067038 @default.
- W3047969938 cites W3099478002 @default.
- W3047969938 cites W3103145119 @default.
- W3047969938 doi "https://doi.org/10.1101/2020.08.06.20169698" @default.
- W3047969938 hasPublicationYear "2020" @default.
- W3047969938 type Work @default.
- W3047969938 sameAs 3047969938 @default.
- W3047969938 citedByCount "4" @default.
- W3047969938 countsByYear W30479699382021 @default.
- W3047969938 countsByYear W30479699382022 @default.
- W3047969938 countsByYear W30479699382023 @default.
- W3047969938 crossrefType "posted-content" @default.
- W3047969938 hasAuthorship W3047969938A5035415553 @default.
- W3047969938 hasAuthorship W3047969938A5065703260 @default.
- W3047969938 hasBestOaLocation W30479699381 @default.
- W3047969938 hasConcept C108583219 @default.
- W3047969938 hasConcept C119857082 @default.
- W3047969938 hasConcept C121332964 @default.
- W3047969938 hasConcept C124101348 @default.
- W3047969938 hasConcept C138885662 @default.
- W3047969938 hasConcept C153180895 @default.
- W3047969938 hasConcept C154945302 @default.
- W3047969938 hasConcept C162324750 @default.
- W3047969938 hasConcept C176217482 @default.
- W3047969938 hasConcept C177264268 @default.
- W3047969938 hasConcept C17744445 @default.
- W3047969938 hasConcept C199360897 @default.
- W3047969938 hasConcept C199539241 @default.
- W3047969938 hasConcept C21547014 @default.
- W3047969938 hasConcept C2776359362 @default.
- W3047969938 hasConcept C2776401178 @default.
- W3047969938 hasConcept C2780226545 @default.
- W3047969938 hasConcept C41008148 @default.
- W3047969938 hasConcept C41895202 @default.
- W3047969938 hasConcept C58489278 @default.
- W3047969938 hasConcept C59404180 @default.
- W3047969938 hasConcept C61797465 @default.
- W3047969938 hasConcept C62520636 @default.
- W3047969938 hasConcept C9357733 @default.
- W3047969938 hasConcept C94625758 @default.
- W3047969938 hasConceptScore W3047969938C108583219 @default.
- W3047969938 hasConceptScore W3047969938C119857082 @default.
- W3047969938 hasConceptScore W3047969938C121332964 @default.
- W3047969938 hasConceptScore W3047969938C124101348 @default.
- W3047969938 hasConceptScore W3047969938C138885662 @default.
- W3047969938 hasConceptScore W3047969938C153180895 @default.
- W3047969938 hasConceptScore W3047969938C154945302 @default.
- W3047969938 hasConceptScore W3047969938C162324750 @default.
- W3047969938 hasConceptScore W3047969938C176217482 @default.
- W3047969938 hasConceptScore W3047969938C177264268 @default.
- W3047969938 hasConceptScore W3047969938C17744445 @default.
- W3047969938 hasConceptScore W3047969938C199360897 @default.
- W3047969938 hasConceptScore W3047969938C199539241 @default.
- W3047969938 hasConceptScore W3047969938C21547014 @default.
- W3047969938 hasConceptScore W3047969938C2776359362 @default.
- W3047969938 hasConceptScore W3047969938C2776401178 @default.
- W3047969938 hasConceptScore W3047969938C2780226545 @default.