Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048002811> ?p ?o ?g. }
- W3048002811 endingPage "6364" @default.
- W3048002811 startingPage "6364" @default.
- W3048002811 abstract "Monthly electric load forecasting is essential to efficiently operate urban power grids. Although diverse forecasting models based on artificial intelligence techniques have been proposed with good performance, they require sufficient datasets for training. In the case of monthly forecasting, because just one data point is generated per month, it is not easy to collect sufficient data to construct models. This lack of data can be alleviated using transfer learning techniques. In this paper, we propose a novel monthly electric load forecasting scheme for a city or district based on transfer learning using similar data from other cities or districts. To do this, we collected the monthly electric load data from 25 districts in Seoul for five categories and various external data, such as calendar, population, and weather data. Then, based on the available data of the target city or district, we selected similar data from the collected datasets by calculating the Pearson correlation coefficient and constructed a forecasting model using the selected data. Lastly, we fine-tuned the model using the target data. To demonstrate the effectiveness of our model, we conducted an extensive comparison with other popular machine-learning techniques through various experiments. We report some of the results." @default.
- W3048002811 created "2020-08-13" @default.
- W3048002811 creator A5008835980 @default.
- W3048002811 creator A5071337745 @default.
- W3048002811 creator A5071959542 @default.
- W3048002811 creator A5075377923 @default.
- W3048002811 date "2020-08-07" @default.
- W3048002811 modified "2023-09-26" @default.
- W3048002811 title "Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities" @default.
- W3048002811 cites W1985660837 @default.
- W3048002811 cites W1991274233 @default.
- W3048002811 cites W2000548672 @default.
- W3048002811 cites W2017685137 @default.
- W3048002811 cites W2052089771 @default.
- W3048002811 cites W2058791286 @default.
- W3048002811 cites W2083020303 @default.
- W3048002811 cites W2085497044 @default.
- W3048002811 cites W2091693228 @default.
- W3048002811 cites W2094195048 @default.
- W3048002811 cites W2154300140 @default.
- W3048002811 cites W2165698076 @default.
- W3048002811 cites W2238499080 @default.
- W3048002811 cites W2281071090 @default.
- W3048002811 cites W2313169588 @default.
- W3048002811 cites W2336998050 @default.
- W3048002811 cites W2470331048 @default.
- W3048002811 cites W2516939159 @default.
- W3048002811 cites W2538874853 @default.
- W3048002811 cites W2593505840 @default.
- W3048002811 cites W2597698998 @default.
- W3048002811 cites W2599952541 @default.
- W3048002811 cites W2602283702 @default.
- W3048002811 cites W2735045459 @default.
- W3048002811 cites W2766843231 @default.
- W3048002811 cites W2771018930 @default.
- W3048002811 cites W2783285794 @default.
- W3048002811 cites W2785887777 @default.
- W3048002811 cites W2786918196 @default.
- W3048002811 cites W2788553534 @default.
- W3048002811 cites W2792046648 @default.
- W3048002811 cites W2807616400 @default.
- W3048002811 cites W2888475809 @default.
- W3048002811 cites W2900769784 @default.
- W3048002811 cites W2902285311 @default.
- W3048002811 cites W2905558533 @default.
- W3048002811 cites W2941944264 @default.
- W3048002811 cites W2946246634 @default.
- W3048002811 cites W2953802274 @default.
- W3048002811 cites W2963029880 @default.
- W3048002811 cites W2963709789 @default.
- W3048002811 cites W2963880329 @default.
- W3048002811 cites W2964248263 @default.
- W3048002811 cites W2975836901 @default.
- W3048002811 cites W2978556704 @default.
- W3048002811 cites W2990424633 @default.
- W3048002811 cites W3000720402 @default.
- W3048002811 cites W3006510956 @default.
- W3048002811 cites W3007585507 @default.
- W3048002811 cites W3011699874 @default.
- W3048002811 cites W3012859247 @default.
- W3048002811 cites W3013703284 @default.
- W3048002811 doi "https://doi.org/10.3390/su12166364" @default.
- W3048002811 hasPublicationYear "2020" @default.
- W3048002811 type Work @default.
- W3048002811 sameAs 3048002811 @default.
- W3048002811 citedByCount "30" @default.
- W3048002811 countsByYear W30480028112021 @default.
- W3048002811 countsByYear W30480028112022 @default.
- W3048002811 countsByYear W30480028112023 @default.
- W3048002811 crossrefType "journal-article" @default.
- W3048002811 hasAuthorship W3048002811A5008835980 @default.
- W3048002811 hasAuthorship W3048002811A5071337745 @default.
- W3048002811 hasAuthorship W3048002811A5071959542 @default.
- W3048002811 hasAuthorship W3048002811A5075377923 @default.
- W3048002811 hasBestOaLocation W30480028111 @default.
- W3048002811 hasConcept C119857082 @default.
- W3048002811 hasConcept C121332964 @default.
- W3048002811 hasConcept C124101348 @default.
- W3048002811 hasConcept C144024400 @default.
- W3048002811 hasConcept C149923435 @default.
- W3048002811 hasConcept C150899416 @default.
- W3048002811 hasConcept C154945302 @default.
- W3048002811 hasConcept C163258240 @default.
- W3048002811 hasConcept C173608175 @default.
- W3048002811 hasConcept C2776175482 @default.
- W3048002811 hasConcept C2908647359 @default.
- W3048002811 hasConcept C40293303 @default.
- W3048002811 hasConcept C41008148 @default.
- W3048002811 hasConcept C62520636 @default.
- W3048002811 hasConcept C77715397 @default.
- W3048002811 hasConceptScore W3048002811C119857082 @default.
- W3048002811 hasConceptScore W3048002811C121332964 @default.
- W3048002811 hasConceptScore W3048002811C124101348 @default.
- W3048002811 hasConceptScore W3048002811C144024400 @default.
- W3048002811 hasConceptScore W3048002811C149923435 @default.
- W3048002811 hasConceptScore W3048002811C150899416 @default.
- W3048002811 hasConceptScore W3048002811C154945302 @default.
- W3048002811 hasConceptScore W3048002811C163258240 @default.