Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048009183> ?p ?o ?g. }
- W3048009183 endingPage "4473" @default.
- W3048009183 startingPage "4463" @default.
- W3048009183 abstract "Raising rotational speed is an effective way to improve power density of axial piston pumps, but high rotational speed tends to cause undesirable cavitation in the pump. Although some machine learning methods have been successfully applied to detect the cavitation with high accuracy, these conventional methods suffer from the drawback of time-consuming and experience-dependent manual feature extraction. In this paper, a new model based on 1-D convolutional neural network (CNN) is proposed to recognize the cavitation intensity of axial piston pumps. To improve the recognition accuracy under noisy environment, the 1-D CNN receives multi-channel vibration data instead of single-channel data. The experimental results show that the proposed anti-noise 1-D CNN model with multi-channel inputs can achieve 15% higher recognition accuracy than its counterpart with single-channel input on a testing set with SNR = 5 dB." @default.
- W3048009183 created "2020-08-13" @default.
- W3048009183 creator A5037292587 @default.
- W3048009183 creator A5040686366 @default.
- W3048009183 creator A5045700877 @default.
- W3048009183 creator A5062253666 @default.
- W3048009183 creator A5062882839 @default.
- W3048009183 creator A5068216488 @default.
- W3048009183 date "2020-12-01" @default.
- W3048009183 modified "2023-10-18" @default.
- W3048009183 title "Cavitation intensity recognition for high-speed axial piston pumps using 1-D convolutional neural networks with multi-channel inputs of vibration signals" @default.
- W3048009183 cites W2010186890 @default.
- W3048009183 cites W2016931528 @default.
- W3048009183 cites W2031222852 @default.
- W3048009183 cites W2060666563 @default.
- W3048009183 cites W2160815625 @default.
- W3048009183 cites W2219903032 @default.
- W3048009183 cites W2291961022 @default.
- W3048009183 cites W2330011967 @default.
- W3048009183 cites W2342792048 @default.
- W3048009183 cites W2420324786 @default.
- W3048009183 cites W2461729787 @default.
- W3048009183 cites W2581524296 @default.
- W3048009183 cites W2612614794 @default.
- W3048009183 cites W2744790985 @default.
- W3048009183 cites W2746111230 @default.
- W3048009183 cites W2755149517 @default.
- W3048009183 cites W2756789966 @default.
- W3048009183 cites W2778801251 @default.
- W3048009183 cites W2794869810 @default.
- W3048009183 cites W2802130013 @default.
- W3048009183 cites W2886428688 @default.
- W3048009183 cites W2892956428 @default.
- W3048009183 cites W2899287716 @default.
- W3048009183 cites W2919115771 @default.
- W3048009183 cites W2939880928 @default.
- W3048009183 cites W2941695139 @default.
- W3048009183 cites W2989881315 @default.
- W3048009183 cites W594200257 @default.
- W3048009183 doi "https://doi.org/10.1016/j.aej.2020.07.052" @default.
- W3048009183 hasPublicationYear "2020" @default.
- W3048009183 type Work @default.
- W3048009183 sameAs 3048009183 @default.
- W3048009183 citedByCount "28" @default.
- W3048009183 countsByYear W30480091832021 @default.
- W3048009183 countsByYear W30480091832022 @default.
- W3048009183 countsByYear W30480091832023 @default.
- W3048009183 crossrefType "journal-article" @default.
- W3048009183 hasAuthorship W3048009183A5037292587 @default.
- W3048009183 hasAuthorship W3048009183A5040686366 @default.
- W3048009183 hasAuthorship W3048009183A5045700877 @default.
- W3048009183 hasAuthorship W3048009183A5062253666 @default.
- W3048009183 hasAuthorship W3048009183A5062882839 @default.
- W3048009183 hasAuthorship W3048009183A5068216488 @default.
- W3048009183 hasBestOaLocation W30480091831 @default.
- W3048009183 hasConcept C115961682 @default.
- W3048009183 hasConcept C120665830 @default.
- W3048009183 hasConcept C121332964 @default.
- W3048009183 hasConcept C127162648 @default.
- W3048009183 hasConcept C127413603 @default.
- W3048009183 hasConcept C153180895 @default.
- W3048009183 hasConcept C154945302 @default.
- W3048009183 hasConcept C165699331 @default.
- W3048009183 hasConcept C198394728 @default.
- W3048009183 hasConcept C199524791 @default.
- W3048009183 hasConcept C207057113 @default.
- W3048009183 hasConcept C24890656 @default.
- W3048009183 hasConcept C41008148 @default.
- W3048009183 hasConcept C50644808 @default.
- W3048009183 hasConcept C52622490 @default.
- W3048009183 hasConcept C76155785 @default.
- W3048009183 hasConcept C78519656 @default.
- W3048009183 hasConcept C81063470 @default.
- W3048009183 hasConcept C81363708 @default.
- W3048009183 hasConcept C99498987 @default.
- W3048009183 hasConceptScore W3048009183C115961682 @default.
- W3048009183 hasConceptScore W3048009183C120665830 @default.
- W3048009183 hasConceptScore W3048009183C121332964 @default.
- W3048009183 hasConceptScore W3048009183C127162648 @default.
- W3048009183 hasConceptScore W3048009183C127413603 @default.
- W3048009183 hasConceptScore W3048009183C153180895 @default.
- W3048009183 hasConceptScore W3048009183C154945302 @default.
- W3048009183 hasConceptScore W3048009183C165699331 @default.
- W3048009183 hasConceptScore W3048009183C198394728 @default.
- W3048009183 hasConceptScore W3048009183C199524791 @default.
- W3048009183 hasConceptScore W3048009183C207057113 @default.
- W3048009183 hasConceptScore W3048009183C24890656 @default.
- W3048009183 hasConceptScore W3048009183C41008148 @default.
- W3048009183 hasConceptScore W3048009183C50644808 @default.
- W3048009183 hasConceptScore W3048009183C52622490 @default.
- W3048009183 hasConceptScore W3048009183C76155785 @default.
- W3048009183 hasConceptScore W3048009183C78519656 @default.
- W3048009183 hasConceptScore W3048009183C81063470 @default.
- W3048009183 hasConceptScore W3048009183C81363708 @default.
- W3048009183 hasConceptScore W3048009183C99498987 @default.
- W3048009183 hasFunder F4320321543 @default.
- W3048009183 hasFunder F4320335795 @default.
- W3048009183 hasIssue "6" @default.