Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048100079> ?p ?o ?g. }
- W3048100079 endingPage "22" @default.
- W3048100079 startingPage "22" @default.
- W3048100079 abstract "Unlocking the full potential of pathology data by gaining computational access to histological pixel data and metadata (digital pathology) is one of the key promises of computational pathology. Despite scientific progress and several regulatory approvals for primary diagnosis using whole-slide imaging, true clinical adoption at scale is slower than anticipated. In the U.S., advances in digital pathology are often siloed pursuits by individual stakeholders, and to our knowledge, there has not been a systematic approach to advance the field through a regulatory science initiative. The Alliance for Digital Pathology (the Alliance) is a recently established, volunteer, collaborative, regulatory science initiative to standardize digital pathology processes to speed up innovation to patients. The purpose is: (1) to account for the patient perspective by including patient advocacy; (2) to investigate and develop methods and tools for the evaluation of effectiveness, safety, and quality to specify risks and benefits in the precompetitive phase; (3) to help strategize the sequence of clinically meaningful deliverables; (4) to encourage and streamline the development of ground-truth data sets for machine learning model development and validation; and (5) to clarify regulatory pathways by investigating relevant regulatory science questions. The Alliance accepts participation from all stakeholders, and we solicit clinically relevant proposals that will benefit the field at large. The initiative will dissolve once a clinical, interoperable, modularized, integrated solution (from tissue acquisition to diagnostic algorithm) has been implemented. In times of rapidly evolving discoveries, scientific input from subject-matter experts is one essential element to inform regulatory guidance and decision-making. The Alliance aims to establish and promote synergistic regulatory science efforts that will leverage diverse inputs to move digital pathology forward and ultimately improve patient care." @default.
- W3048100079 created "2020-08-13" @default.
- W3048100079 creator A5013500567 @default.
- W3048100079 creator A5021994524 @default.
- W3048100079 creator A5028743200 @default.
- W3048100079 creator A5032322256 @default.
- W3048100079 creator A5034444686 @default.
- W3048100079 creator A5037385192 @default.
- W3048100079 creator A5039134232 @default.
- W3048100079 creator A5048670338 @default.
- W3048100079 creator A5062357700 @default.
- W3048100079 creator A5063015203 @default.
- W3048100079 creator A5065436868 @default.
- W3048100079 creator A5067299042 @default.
- W3048100079 creator A5074391082 @default.
- W3048100079 creator A5078640326 @default.
- W3048100079 creator A5079763100 @default.
- W3048100079 creator A5082563757 @default.
- W3048100079 creator A5085143972 @default.
- W3048100079 date "2020-01-01" @default.
- W3048100079 modified "2023-09-27" @default.
- W3048100079 title "A Regulatory Science Initiative to Harmonize and Standardize Digital Pathology and Machine Learning Processes to Speed up Clinical Innovation to Patients" @default.
- W3048100079 cites W1970962264 @default.
- W3048100079 cites W1971487710 @default.
- W3048100079 cites W2002882918 @default.
- W3048100079 cites W2005499920 @default.
- W3048100079 cites W2041284290 @default.
- W3048100079 cites W2053490589 @default.
- W3048100079 cites W2110972788 @default.
- W3048100079 cites W2122715629 @default.
- W3048100079 cites W2125475984 @default.
- W3048100079 cites W2125885282 @default.
- W3048100079 cites W2130912656 @default.
- W3048100079 cites W2135823669 @default.
- W3048100079 cites W2291537354 @default.
- W3048100079 cites W2338789981 @default.
- W3048100079 cites W2346924903 @default.
- W3048100079 cites W2604316473 @default.
- W3048100079 cites W2614808277 @default.
- W3048100079 cites W2734219524 @default.
- W3048100079 cites W2744206416 @default.
- W3048100079 cites W2751723768 @default.
- W3048100079 cites W2753233764 @default.
- W3048100079 cites W2759004613 @default.
- W3048100079 cites W2759577099 @default.
- W3048100079 cites W2760946358 @default.
- W3048100079 cites W2775293952 @default.
- W3048100079 cites W2780025726 @default.
- W3048100079 cites W2791382460 @default.
- W3048100079 cites W2793249006 @default.
- W3048100079 cites W2795546714 @default.
- W3048100079 cites W2807410455 @default.
- W3048100079 cites W2809275911 @default.
- W3048100079 cites W2884160046 @default.
- W3048100079 cites W2897068067 @default.
- W3048100079 cites W2897098821 @default.
- W3048100079 cites W2905969903 @default.
- W3048100079 cites W2912194425 @default.
- W3048100079 cites W2921675148 @default.
- W3048100079 cites W2943370629 @default.
- W3048100079 cites W2944614120 @default.
- W3048100079 cites W2945500496 @default.
- W3048100079 cites W2952800276 @default.
- W3048100079 cites W2954584875 @default.
- W3048100079 cites W2956228567 @default.
- W3048100079 cites W2963333659 @default.
- W3048100079 cites W2964756323 @default.
- W3048100079 cites W2967444033 @default.
- W3048100079 cites W2969715273 @default.
- W3048100079 cites W2971361125 @default.
- W3048100079 cites W2971998890 @default.
- W3048100079 cites W2981553472 @default.
- W3048100079 cites W3003368900 @default.
- W3048100079 doi "https://doi.org/10.4103/jpi.jpi_27_20" @default.
- W3048100079 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7518200" @default.
- W3048100079 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33042601" @default.
- W3048100079 hasPublicationYear "2020" @default.
- W3048100079 type Work @default.
- W3048100079 sameAs 3048100079 @default.
- W3048100079 citedByCount "20" @default.
- W3048100079 countsByYear W30481000792020 @default.
- W3048100079 countsByYear W30481000792021 @default.
- W3048100079 countsByYear W30481000792022 @default.
- W3048100079 countsByYear W30481000792023 @default.
- W3048100079 crossrefType "journal-article" @default.
- W3048100079 hasAuthorship W3048100079A5013500567 @default.
- W3048100079 hasAuthorship W3048100079A5021994524 @default.
- W3048100079 hasAuthorship W3048100079A5028743200 @default.
- W3048100079 hasAuthorship W3048100079A5032322256 @default.
- W3048100079 hasAuthorship W3048100079A5034444686 @default.
- W3048100079 hasAuthorship W3048100079A5037385192 @default.
- W3048100079 hasAuthorship W3048100079A5039134232 @default.
- W3048100079 hasAuthorship W3048100079A5048670338 @default.
- W3048100079 hasAuthorship W3048100079A5062357700 @default.
- W3048100079 hasAuthorship W3048100079A5063015203 @default.
- W3048100079 hasAuthorship W3048100079A5065436868 @default.
- W3048100079 hasAuthorship W3048100079A5067299042 @default.
- W3048100079 hasAuthorship W3048100079A5074391082 @default.