Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048105035> ?p ?o ?g. }
- W3048105035 endingPage "116281" @default.
- W3048105035 startingPage "116281" @default.
- W3048105035 abstract "Resource recovery and emissions from sanitation systems are critical sustainability indicators for strategic urban sanitation planning. In this context, sanitation systems are the most often structured using technology-driven templates rather than performance-based sustainability indicators. In this work, we answer two questions: Firstly, can we estimate generic resource recovery and loss potentials and their uncertainties for a diverse and large set of sanitation systems? And secondly, can we identify technological aspects of sanitation systems that indicate a better overall resource recovery performance? The aim is to obtain information that can be used as an input into any strategic planning process and to help shape technology development and system design for resource recovery in the future. Starting from 41 technologies, which include novel and conventional options, we build 101,548 valid sanitation system configurations. For each system configuration we quantify phosphorus, nitrogen, total solids, and water flows and use that to calculate recovery potentials and losses to the environment, i.e. the soil, air, or surface water. The four substances cover different properties and serve as a proxy for nutrient, organics, energy, and water resources. For modelling the flows ex-ante, we use a novel approach to consider a large range of international literature and expert data considering uncertainties. Thus all results are generic and can therefore be used as input into any strategic planning process or to help guide future technology development. A detailed analysis of the results allows us to identify factors that influence recovery and losses. These factors include the type of source, the length of systems, and the level of containment in storage and treatment. The factors influencing recovery are related to interactions of different technologies in a system which shows the relevance of a modelling approach that allows to look at all possible system configurations systematically. Based on our analysis, we developed five recommendations for the optimization of resource recovery: (i) prioritize short systems that close the loop at the lowest possible level; (ii) separate waste streams as much as possible, because this allows for higher recovery potentials; (iii) use storage and treatment technologies that contain the products as much as possible, avoid leaching technologies (e.g. single pits) and technologies with high risk of volatilization (e.g. drying beds); (iv) design sinks to optimise recovery and avoid disposal sinks; and (v) combine various reuse options for different side streams (e.g. urine diversion systems that combine reuse of urine and production of biofuel from faeces)." @default.
- W3048105035 created "2020-08-13" @default.
- W3048105035 creator A5018708162 @default.
- W3048105035 creator A5033731839 @default.
- W3048105035 creator A5073326199 @default.
- W3048105035 date "2020-11-01" @default.
- W3048105035 modified "2023-09-27" @default.
- W3048105035 title "Comparative analysis of sanitation systems for resource recovery: Influence of configurations and single technology components" @default.
- W3048105035 cites W1489034231 @default.
- W3048105035 cites W1969810634 @default.
- W3048105035 cites W1975070052 @default.
- W3048105035 cites W1982991037 @default.
- W3048105035 cites W1992198528 @default.
- W3048105035 cites W1994307693 @default.
- W3048105035 cites W1997775378 @default.
- W3048105035 cites W2002133605 @default.
- W3048105035 cites W2005276977 @default.
- W3048105035 cites W2006355174 @default.
- W3048105035 cites W2007730836 @default.
- W3048105035 cites W2008996338 @default.
- W3048105035 cites W2009116433 @default.
- W3048105035 cites W2020480625 @default.
- W3048105035 cites W2021891018 @default.
- W3048105035 cites W2036113680 @default.
- W3048105035 cites W2041717976 @default.
- W3048105035 cites W2043907037 @default.
- W3048105035 cites W2049410598 @default.
- W3048105035 cites W2050125700 @default.
- W3048105035 cites W2052916179 @default.
- W3048105035 cites W2062526331 @default.
- W3048105035 cites W2065080714 @default.
- W3048105035 cites W2067850991 @default.
- W3048105035 cites W2068363692 @default.
- W3048105035 cites W2075715623 @default.
- W3048105035 cites W2081087185 @default.
- W3048105035 cites W2087255919 @default.
- W3048105035 cites W2093290095 @default.
- W3048105035 cites W2120575449 @default.
- W3048105035 cites W2125837254 @default.
- W3048105035 cites W2129446967 @default.
- W3048105035 cites W2129546617 @default.
- W3048105035 cites W2141666921 @default.
- W3048105035 cites W2144528231 @default.
- W3048105035 cites W2157303160 @default.
- W3048105035 cites W2162855789 @default.
- W3048105035 cites W2334131120 @default.
- W3048105035 cites W2404213878 @default.
- W3048105035 cites W2542473081 @default.
- W3048105035 cites W2548512598 @default.
- W3048105035 cites W2769703142 @default.
- W3048105035 cites W2799497258 @default.
- W3048105035 cites W2885664709 @default.
- W3048105035 cites W2895155660 @default.
- W3048105035 cites W2913227842 @default.
- W3048105035 cites W2932153728 @default.
- W3048105035 cites W2949766144 @default.
- W3048105035 cites W3004431704 @default.
- W3048105035 cites W3014808202 @default.
- W3048105035 cites W3043290378 @default.
- W3048105035 doi "https://doi.org/10.1016/j.watres.2020.116281" @default.
- W3048105035 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32949886" @default.
- W3048105035 hasPublicationYear "2020" @default.
- W3048105035 type Work @default.
- W3048105035 sameAs 3048105035 @default.
- W3048105035 citedByCount "8" @default.
- W3048105035 countsByYear W30481050352021 @default.
- W3048105035 countsByYear W30481050352022 @default.
- W3048105035 countsByYear W30481050352023 @default.
- W3048105035 crossrefType "journal-article" @default.
- W3048105035 hasAuthorship W3048105035A5018708162 @default.
- W3048105035 hasAuthorship W3048105035A5033731839 @default.
- W3048105035 hasAuthorship W3048105035A5073326199 @default.
- W3048105035 hasBestOaLocation W30481050351 @default.
- W3048105035 hasConcept C107826830 @default.
- W3048105035 hasConcept C111919701 @default.
- W3048105035 hasConcept C112930515 @default.
- W3048105035 hasConcept C134560507 @default.
- W3048105035 hasConcept C144133560 @default.
- W3048105035 hasConcept C151730666 @default.
- W3048105035 hasConcept C162324750 @default.
- W3048105035 hasConcept C18903297 @default.
- W3048105035 hasConcept C206345919 @default.
- W3048105035 hasConcept C2777569206 @default.
- W3048105035 hasConcept C2779343474 @default.
- W3048105035 hasConcept C2780151969 @default.
- W3048105035 hasConcept C31258907 @default.
- W3048105035 hasConcept C39432304 @default.
- W3048105035 hasConcept C41008148 @default.
- W3048105035 hasConcept C66204764 @default.
- W3048105035 hasConcept C86803240 @default.
- W3048105035 hasConcept C87717796 @default.
- W3048105035 hasConcept C94061648 @default.
- W3048105035 hasConcept C98045186 @default.
- W3048105035 hasConceptScore W3048105035C107826830 @default.
- W3048105035 hasConceptScore W3048105035C111919701 @default.
- W3048105035 hasConceptScore W3048105035C112930515 @default.
- W3048105035 hasConceptScore W3048105035C134560507 @default.
- W3048105035 hasConceptScore W3048105035C144133560 @default.