Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048114952> ?p ?o ?g. }
- W3048114952 abstract "Machine-learning (ML) techniques provide a new perspective for constructing turbulence models for Reynolds-averaged Navier-Stokes (RANS) simulations. Designed with advanced fitting ability, they can increase the accuracy of the turbulence models given enough information from high-fidelity datasets is provided. In this study, an iterative ML-RANS computational framework is proposed, that combines the ML algorithm and transport equations of a conventional turbulence model built on empirical knowledge. This framework could maintain a consistent procedure to obtain the input features for ML models in both the training and predicting stages. The effective form of the closure term is discussed to explain how to determine the target variables for the ML algorithm, which ensures a mean flow solution of RANS equations free of amplified error. The inherent multi-valued problem of the existing constitutive theory is studied to establish a proper regression system for ML algorithms. From the same input features, an accurate closure can be obtained through ML model, and a flow field similar to the high-fidelity datasets can be obtained based on such closure so that a built-in reproducibility for the training cases can be achieved. It is demonstrated that the framework can deal with a cross-case training strategy with data from turbulent channel flows at different Reynolds numbers. A posteriori simulations of channel flows show that the framework is able to predict both the mean flow field and turbulent variables accurately. Applied to the flow over periodic hills a better result than for a conventional first order turbulence model is obtained, indicating a promising prediction capability of the developed ML-RANS model for a recirculating flow even though the model is trained with planar channel flow data" @default.
- W3048114952 created "2020-08-13" @default.
- W3048114952 creator A5005106118 @default.
- W3048114952 creator A5042819375 @default.
- W3048114952 creator A5055908486 @default.
- W3048114952 creator A5056622159 @default.
- W3048114952 creator A5066361588 @default.
- W3048114952 date "2019-10-02" @default.
- W3048114952 modified "2023-09-27" @default.
- W3048114952 title "An Iterative Machine-Learning Framework for Turbulence Modeling in RANS" @default.
- W3048114952 cites W1651373482 @default.
- W3048114952 cites W1965957586 @default.
- W3048114952 cites W1966421388 @default.
- W3048114952 cites W1974097079 @default.
- W3048114952 cites W1977296795 @default.
- W3048114952 cites W1984645605 @default.
- W3048114952 cites W1987796781 @default.
- W3048114952 cites W2017882117 @default.
- W3048114952 cites W2023230607 @default.
- W3048114952 cites W2034434606 @default.
- W3048114952 cites W2038785086 @default.
- W3048114952 cites W2045218821 @default.
- W3048114952 cites W2059326730 @default.
- W3048114952 cites W2062474936 @default.
- W3048114952 cites W2072921737 @default.
- W3048114952 cites W2110187357 @default.
- W3048114952 cites W2110418811 @default.
- W3048114952 cites W2135046866 @default.
- W3048114952 cites W2155893237 @default.
- W3048114952 cites W2171076022 @default.
- W3048114952 cites W2186615578 @default.
- W3048114952 cites W2283351822 @default.
- W3048114952 cites W2316804782 @default.
- W3048114952 cites W2322261300 @default.
- W3048114952 cites W2335524910 @default.
- W3048114952 cites W2345737627 @default.
- W3048114952 cites W2402144811 @default.
- W3048114952 cites W2515586274 @default.
- W3048114952 cites W2534240011 @default.
- W3048114952 cites W2619115145 @default.
- W3048114952 cites W2766872946 @default.
- W3048114952 cites W2895846736 @default.
- W3048114952 cites W2965947939 @default.
- W3048114952 cites W3098665322 @default.
- W3048114952 cites W3105469151 @default.
- W3048114952 hasPublicationYear "2019" @default.
- W3048114952 type Work @default.
- W3048114952 sameAs 3048114952 @default.
- W3048114952 citedByCount "0" @default.
- W3048114952 crossrefType "posted-content" @default.
- W3048114952 hasAuthorship W3048114952A5005106118 @default.
- W3048114952 hasAuthorship W3048114952A5042819375 @default.
- W3048114952 hasAuthorship W3048114952A5055908486 @default.
- W3048114952 hasAuthorship W3048114952A5056622159 @default.
- W3048114952 hasAuthorship W3048114952A5066361588 @default.
- W3048114952 hasConcept C11413529 @default.
- W3048114952 hasConcept C121332964 @default.
- W3048114952 hasConcept C126255220 @default.
- W3048114952 hasConcept C146834321 @default.
- W3048114952 hasConcept C150711758 @default.
- W3048114952 hasConcept C162324750 @default.
- W3048114952 hasConcept C196558001 @default.
- W3048114952 hasConcept C2524010 @default.
- W3048114952 hasConcept C28826006 @default.
- W3048114952 hasConcept C32526432 @default.
- W3048114952 hasConcept C33923547 @default.
- W3048114952 hasConcept C34447519 @default.
- W3048114952 hasConcept C38349280 @default.
- W3048114952 hasConcept C41008148 @default.
- W3048114952 hasConcept C57879066 @default.
- W3048114952 hasConceptScore W3048114952C11413529 @default.
- W3048114952 hasConceptScore W3048114952C121332964 @default.
- W3048114952 hasConceptScore W3048114952C126255220 @default.
- W3048114952 hasConceptScore W3048114952C146834321 @default.
- W3048114952 hasConceptScore W3048114952C150711758 @default.
- W3048114952 hasConceptScore W3048114952C162324750 @default.
- W3048114952 hasConceptScore W3048114952C196558001 @default.
- W3048114952 hasConceptScore W3048114952C2524010 @default.
- W3048114952 hasConceptScore W3048114952C28826006 @default.
- W3048114952 hasConceptScore W3048114952C32526432 @default.
- W3048114952 hasConceptScore W3048114952C33923547 @default.
- W3048114952 hasConceptScore W3048114952C34447519 @default.
- W3048114952 hasConceptScore W3048114952C38349280 @default.
- W3048114952 hasConceptScore W3048114952C41008148 @default.
- W3048114952 hasConceptScore W3048114952C57879066 @default.
- W3048114952 hasLocation W30481149521 @default.
- W3048114952 hasOpenAccess W3048114952 @default.
- W3048114952 hasPrimaryLocation W30481149521 @default.
- W3048114952 hasRelatedWork W2040885143 @default.
- W3048114952 hasRelatedWork W2169280049 @default.
- W3048114952 hasRelatedWork W2220336119 @default.
- W3048114952 hasRelatedWork W2313321114 @default.
- W3048114952 hasRelatedWork W2316668071 @default.
- W3048114952 hasRelatedWork W2345446220 @default.
- W3048114952 hasRelatedWork W2418640260 @default.
- W3048114952 hasRelatedWork W2509002083 @default.
- W3048114952 hasRelatedWork W2775200245 @default.
- W3048114952 hasRelatedWork W2892321850 @default.
- W3048114952 hasRelatedWork W2896738042 @default.
- W3048114952 hasRelatedWork W2897683673 @default.