Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048121554> ?p ?o ?g. }
- W3048121554 endingPage "2246" @default.
- W3048121554 startingPage "2246" @default.
- W3048121554 abstract "Debris floods, as one of the most significant natural hazards, often threaten the lives and property of many people worldwide. Predicting models are essential for flood warning systems to minimize casualties of debris floods. Since HEC-HMS (Hydrologic Engineering Center’s Hydrological Modelling System) cannot simulate debris flow, this study proposes a new hybrid model that uses artificial intelligence models to overcome HEC-HMS’s insufficiency in reflecting the sediment concentration effect on the debris floods. A sediment concentration is an effective factor for evaluating debris flood peak flows. This led to the proposal of new hybrid models for predicting the debris flood peak flows on the basis of hybridization of the artificial intelligence models (Bayesian Network (BN) and Support Vector Regression–Particle Swarm Optimization (SVR-PSO)) and HEC-HMS. To estimate the sediment concentration of floods by using the proposed artificial intelligence models, we nominated an average basin elevation, an average basin slope, a basin area, the current day rainfall, the antecedent rainfall of the past 3 days, and the streamflow of the previous day the previous day as the effective variables. In the validation stage, the average of the Mean Absolute Relative Error (MARE) of the estimated values were 0.024, 0.038, and 0.024 for the typical floods that occurred in the Navrood, Kasilian, and the Amameh basins in the north of Iran, respectively. Similarly, we obtained values of 0.038, 0.073, and 0.040 for the debris flood events for the three respective locations. After predicting the debris flood peak flows by the proposed hybrid HMS-BN and HMS-SVR-PSO models, the average of the MAREs for all debris flood events was reduced to 0.013 and 0.014, respectively. The comparison of MAREs of the examined hybrid models shows that the HMS-BN model results in higher accuracy than the HMS-SVR-PSO model in the prediction of the debris flood peak flows. Generally, the absolute error of prediction by the proposed hybrid model is reduced to one-third of the HEC-HMS. The prediction of the debris flood peak flows using the proposed hybrid model can be examined in the debris flood warning systems to reduce the potential damages and casualties in similar basins." @default.
- W3048121554 created "2020-08-13" @default.
- W3048121554 creator A5018447351 @default.
- W3048121554 creator A5062834756 @default.
- W3048121554 creator A5072963335 @default.
- W3048121554 creator A5078216204 @default.
- W3048121554 creator A5083596721 @default.
- W3048121554 date "2020-08-10" @default.
- W3048121554 modified "2023-09-23" @default.
- W3048121554 title "A Hybrid Intelligence Model for the Prediction of the Peak Flow of Debris Floods" @default.
- W3048121554 cites W1964357740 @default.
- W3048121554 cites W1976980944 @default.
- W3048121554 cites W1995362166 @default.
- W3048121554 cites W2012314295 @default.
- W3048121554 cites W2053368753 @default.
- W3048121554 cites W2073690472 @default.
- W3048121554 cites W2105168899 @default.
- W3048121554 cites W2113277050 @default.
- W3048121554 cites W2120243482 @default.
- W3048121554 cites W2124320755 @default.
- W3048121554 cites W2130196411 @default.
- W3048121554 cites W2155238751 @default.
- W3048121554 cites W2169587320 @default.
- W3048121554 cites W2261861846 @default.
- W3048121554 cites W2264980633 @default.
- W3048121554 cites W2288996438 @default.
- W3048121554 cites W2311533087 @default.
- W3048121554 cites W2333594044 @default.
- W3048121554 cites W2531675396 @default.
- W3048121554 cites W2543580944 @default.
- W3048121554 cites W2552169962 @default.
- W3048121554 cites W2561081145 @default.
- W3048121554 cites W2565305562 @default.
- W3048121554 cites W2570610313 @default.
- W3048121554 cites W2581211689 @default.
- W3048121554 cites W2606728238 @default.
- W3048121554 cites W2788722235 @default.
- W3048121554 cites W2859128575 @default.
- W3048121554 cites W2885834602 @default.
- W3048121554 cites W2923528885 @default.
- W3048121554 cites W2975480370 @default.
- W3048121554 cites W2998136163 @default.
- W3048121554 cites W2998154485 @default.
- W3048121554 cites W3015940178 @default.
- W3048121554 doi "https://doi.org/10.3390/w12082246" @default.
- W3048121554 hasPublicationYear "2020" @default.
- W3048121554 type Work @default.
- W3048121554 sameAs 3048121554 @default.
- W3048121554 citedByCount "6" @default.
- W3048121554 countsByYear W30481215542021 @default.
- W3048121554 countsByYear W30481215542022 @default.
- W3048121554 countsByYear W30481215542023 @default.
- W3048121554 crossrefType "journal-article" @default.
- W3048121554 hasAuthorship W3048121554A5018447351 @default.
- W3048121554 hasAuthorship W3048121554A5062834756 @default.
- W3048121554 hasAuthorship W3048121554A5072963335 @default.
- W3048121554 hasAuthorship W3048121554A5078216204 @default.
- W3048121554 hasAuthorship W3048121554A5083596721 @default.
- W3048121554 hasBestOaLocation W30481215541 @default.
- W3048121554 hasConcept C109007969 @default.
- W3048121554 hasConcept C114793014 @default.
- W3048121554 hasConcept C127313418 @default.
- W3048121554 hasConcept C153294291 @default.
- W3048121554 hasConcept C166957645 @default.
- W3048121554 hasConcept C183195422 @default.
- W3048121554 hasConcept C186295008 @default.
- W3048121554 hasConcept C187320778 @default.
- W3048121554 hasConcept C205649164 @default.
- W3048121554 hasConcept C2776023875 @default.
- W3048121554 hasConcept C2776643431 @default.
- W3048121554 hasConcept C2816523 @default.
- W3048121554 hasConcept C39432304 @default.
- W3048121554 hasConcept C74256435 @default.
- W3048121554 hasConcept C76886044 @default.
- W3048121554 hasConceptScore W3048121554C109007969 @default.
- W3048121554 hasConceptScore W3048121554C114793014 @default.
- W3048121554 hasConceptScore W3048121554C127313418 @default.
- W3048121554 hasConceptScore W3048121554C153294291 @default.
- W3048121554 hasConceptScore W3048121554C166957645 @default.
- W3048121554 hasConceptScore W3048121554C183195422 @default.
- W3048121554 hasConceptScore W3048121554C186295008 @default.
- W3048121554 hasConceptScore W3048121554C187320778 @default.
- W3048121554 hasConceptScore W3048121554C205649164 @default.
- W3048121554 hasConceptScore W3048121554C2776023875 @default.
- W3048121554 hasConceptScore W3048121554C2776643431 @default.
- W3048121554 hasConceptScore W3048121554C2816523 @default.
- W3048121554 hasConceptScore W3048121554C39432304 @default.
- W3048121554 hasConceptScore W3048121554C74256435 @default.
- W3048121554 hasConceptScore W3048121554C76886044 @default.
- W3048121554 hasIssue "8" @default.
- W3048121554 hasLocation W30481215541 @default.
- W3048121554 hasLocation W30481215542 @default.
- W3048121554 hasOpenAccess W3048121554 @default.
- W3048121554 hasPrimaryLocation W30481215541 @default.
- W3048121554 hasRelatedWork W1970734598 @default.
- W3048121554 hasRelatedWork W2010120407 @default.
- W3048121554 hasRelatedWork W2032660778 @default.
- W3048121554 hasRelatedWork W2125632728 @default.