Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048132434> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3048132434 endingPage "769" @default.
- W3048132434 startingPage "755" @default.
- W3048132434 abstract "Organ segmentation in CT volumes is an important pre-processing step in many computer assisted intervention and diagnosis methods. In recent years, convolutional neural networks have dominated the state of the art in this task. However, since this problem presents a challenging environment due to high variability in the organ's shape and similarity between tissues, the generation of false negative and false positive regions in the output segmentation is a common issue. Recent works have shown that the uncertainty analysis of the model can provide us with useful information about potential errors in the segmentation. In this context, we proposed a segmentation refinement method based on uncertainty analysis and graph convolutional networks. We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem that is solved by training a graph convolutional network. To test our method we refine the initial output of a 2D U-Net. We validate our framework with the NIH pancreas dataset and the spleen dataset of the medical segmentation decathlon. We show that our method outperforms the state-of-the art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen, with respect to the original U-Net's prediction. Finally, we discuss the results and current limitations of the model for future work in this research direction. For reproducibility purposes, we make our code publicly available." @default.
- W3048132434 created "2020-08-13" @default.
- W3048132434 creator A5046294027 @default.
- W3048132434 creator A5046896448 @default.
- W3048132434 creator A5046955009 @default.
- W3048132434 date "2020-09-21" @default.
- W3048132434 modified "2023-10-16" @default.
- W3048132434 title "Uncertainty-based Graph Convolutional Networks for Organ Segmentation Refinement" @default.
- W3048132434 hasPublicationYear "2020" @default.
- W3048132434 type Work @default.
- W3048132434 sameAs 3048132434 @default.
- W3048132434 citedByCount "1" @default.
- W3048132434 countsByYear W30481324342020 @default.
- W3048132434 crossrefType "journal-article" @default.
- W3048132434 hasAuthorship W3048132434A5046294027 @default.
- W3048132434 hasAuthorship W3048132434A5046896448 @default.
- W3048132434 hasAuthorship W3048132434A5046955009 @default.
- W3048132434 hasConcept C105795698 @default.
- W3048132434 hasConcept C111919701 @default.
- W3048132434 hasConcept C119857082 @default.
- W3048132434 hasConcept C124101348 @default.
- W3048132434 hasConcept C132525143 @default.
- W3048132434 hasConcept C151730666 @default.
- W3048132434 hasConcept C153180895 @default.
- W3048132434 hasConcept C154945302 @default.
- W3048132434 hasConcept C22029948 @default.
- W3048132434 hasConcept C2779343474 @default.
- W3048132434 hasConcept C33923547 @default.
- W3048132434 hasConcept C41008148 @default.
- W3048132434 hasConcept C43126263 @default.
- W3048132434 hasConcept C80444323 @default.
- W3048132434 hasConcept C81363708 @default.
- W3048132434 hasConcept C86803240 @default.
- W3048132434 hasConcept C89600930 @default.
- W3048132434 hasConceptScore W3048132434C105795698 @default.
- W3048132434 hasConceptScore W3048132434C111919701 @default.
- W3048132434 hasConceptScore W3048132434C119857082 @default.
- W3048132434 hasConceptScore W3048132434C124101348 @default.
- W3048132434 hasConceptScore W3048132434C132525143 @default.
- W3048132434 hasConceptScore W3048132434C151730666 @default.
- W3048132434 hasConceptScore W3048132434C153180895 @default.
- W3048132434 hasConceptScore W3048132434C154945302 @default.
- W3048132434 hasConceptScore W3048132434C22029948 @default.
- W3048132434 hasConceptScore W3048132434C2779343474 @default.
- W3048132434 hasConceptScore W3048132434C33923547 @default.
- W3048132434 hasConceptScore W3048132434C41008148 @default.
- W3048132434 hasConceptScore W3048132434C43126263 @default.
- W3048132434 hasConceptScore W3048132434C80444323 @default.
- W3048132434 hasConceptScore W3048132434C81363708 @default.
- W3048132434 hasConceptScore W3048132434C86803240 @default.
- W3048132434 hasConceptScore W3048132434C89600930 @default.
- W3048132434 hasLocation W30481324341 @default.
- W3048132434 hasOpenAccess W3048132434 @default.
- W3048132434 hasPrimaryLocation W30481324341 @default.
- W3048132434 hasRelatedWork W2330601728 @default.
- W3048132434 hasRelatedWork W2340646070 @default.
- W3048132434 hasRelatedWork W2799657635 @default.
- W3048132434 hasRelatedWork W2945667908 @default.
- W3048132434 hasRelatedWork W2947903101 @default.
- W3048132434 hasRelatedWork W2966782955 @default.
- W3048132434 hasRelatedWork W3005297444 @default.
- W3048132434 hasRelatedWork W3007267217 @default.
- W3048132434 hasRelatedWork W3089334789 @default.
- W3048132434 hasRelatedWork W3091541864 @default.
- W3048132434 hasRelatedWork W3101227480 @default.
- W3048132434 hasRelatedWork W3114010509 @default.
- W3048132434 hasRelatedWork W3118743179 @default.
- W3048132434 hasRelatedWork W3119795314 @default.
- W3048132434 hasRelatedWork W3134093991 @default.
- W3048132434 hasRelatedWork W3136689951 @default.
- W3048132434 hasRelatedWork W3169270314 @default.
- W3048132434 hasRelatedWork W3202006693 @default.
- W3048132434 hasRelatedWork W2182208022 @default.
- W3048132434 hasRelatedWork W3086807020 @default.
- W3048132434 isParatext "false" @default.
- W3048132434 isRetracted "false" @default.
- W3048132434 magId "3048132434" @default.
- W3048132434 workType "article" @default.