Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048138840> ?p ?o ?g. }
- W3048138840 endingPage "28921" @default.
- W3048138840 startingPage "28914" @default.
- W3048138840 abstract "Metal oxide anodes which can achieve high lithiation capacities by conversion mechanism are promising in lithium storage systems. The main obstacle to their practical applications is poor cycling performance. Regulating element ratio of multi-metal materials is effective for improving their electrochemical properties. Herein, optimized Mn–Ni–Co–O anode materials with long-cycle stability are reported. The improvement is associated with proper element ratio, which enables accelerated Li + ion diffusion and high-stability LiF-rich solid electrolyte interphase (SEI) layer. As a result, (Ni 0 · 1 Co 0 · 3 Mn 0.6 ) 3 O 4 materials deliver lithiation capacities of 500 mAh g −1 after 1500 cycles at the current density of 1 A g −1 . It is greatly better than other samples with different element ratio. Then, application properties of (Ni 0 · 1 Co 0 · 3 Mn 0.6 ) 3 O 4 materials are evaluated by assembled with active carbon and LiFePO 4 for energy storage devices, respectively. The obtained Li-ion capacitor exhibits high energy densities of 112 Wh kg −1 based on total mass of oxides and active carbon. The obtained Li-ion battery also shows good cycle stability. These results suggest lithiation capacity fade of metal oxide anodes can be mitigated by controlling their component contents. This low-cost and high effective way is to promote commercial applications of metal oxide anode materials in energy storage systems." @default.
- W3048138840 created "2020-08-13" @default.
- W3048138840 creator A5002922433 @default.
- W3048138840 creator A5014525715 @default.
- W3048138840 creator A5016059098 @default.
- W3048138840 creator A5022256556 @default.
- W3048138840 creator A5044797721 @default.
- W3048138840 creator A5059109155 @default.
- W3048138840 date "2020-12-01" @default.
- W3048138840 modified "2023-10-17" @default.
- W3048138840 title "High-performance ternary metal oxide anodes for lithium storage" @default.
- W3048138840 cites W1978449622 @default.
- W3048138840 cites W2070982430 @default.
- W3048138840 cites W2605558666 @default.
- W3048138840 cites W2606791425 @default.
- W3048138840 cites W2756432152 @default.
- W3048138840 cites W2772422276 @default.
- W3048138840 cites W2779461886 @default.
- W3048138840 cites W2782106236 @default.
- W3048138840 cites W2782791744 @default.
- W3048138840 cites W2785374988 @default.
- W3048138840 cites W2786109733 @default.
- W3048138840 cites W2786357323 @default.
- W3048138840 cites W2789240727 @default.
- W3048138840 cites W2790037575 @default.
- W3048138840 cites W2790514103 @default.
- W3048138840 cites W2791579330 @default.
- W3048138840 cites W2792330355 @default.
- W3048138840 cites W2797329578 @default.
- W3048138840 cites W2802772353 @default.
- W3048138840 cites W2803878977 @default.
- W3048138840 cites W2804061921 @default.
- W3048138840 cites W2804947668 @default.
- W3048138840 cites W2810179569 @default.
- W3048138840 cites W2884144982 @default.
- W3048138840 cites W2892234332 @default.
- W3048138840 cites W2905223030 @default.
- W3048138840 cites W2905669938 @default.
- W3048138840 cites W2911161888 @default.
- W3048138840 cites W2919500947 @default.
- W3048138840 cites W2924361956 @default.
- W3048138840 cites W2937139727 @default.
- W3048138840 cites W2945856258 @default.
- W3048138840 cites W2947545386 @default.
- W3048138840 cites W2949175815 @default.
- W3048138840 cites W2949528770 @default.
- W3048138840 cites W2955513896 @default.
- W3048138840 cites W2961811038 @default.
- W3048138840 cites W2965449973 @default.
- W3048138840 cites W2971603253 @default.
- W3048138840 cites W2978920589 @default.
- W3048138840 cites W2981525316 @default.
- W3048138840 cites W2998395722 @default.
- W3048138840 cites W3000102224 @default.
- W3048138840 cites W3034137348 @default.
- W3048138840 cites W3039308907 @default.
- W3048138840 doi "https://doi.org/10.1016/j.ceramint.2020.08.059" @default.
- W3048138840 hasPublicationYear "2020" @default.
- W3048138840 type Work @default.
- W3048138840 sameAs 3048138840 @default.
- W3048138840 citedByCount "3" @default.
- W3048138840 countsByYear W30481388402021 @default.
- W3048138840 countsByYear W30481388402022 @default.
- W3048138840 crossrefType "journal-article" @default.
- W3048138840 hasAuthorship W3048138840A5002922433 @default.
- W3048138840 hasAuthorship W3048138840A5014525715 @default.
- W3048138840 hasAuthorship W3048138840A5016059098 @default.
- W3048138840 hasAuthorship W3048138840A5022256556 @default.
- W3048138840 hasAuthorship W3048138840A5044797721 @default.
- W3048138840 hasAuthorship W3048138840A5059109155 @default.
- W3048138840 hasConcept C104779481 @default.
- W3048138840 hasConcept C121332964 @default.
- W3048138840 hasConcept C127413603 @default.
- W3048138840 hasConcept C134018914 @default.
- W3048138840 hasConcept C140205800 @default.
- W3048138840 hasConcept C147789679 @default.
- W3048138840 hasConcept C159985019 @default.
- W3048138840 hasConcept C163258240 @default.
- W3048138840 hasConcept C17525397 @default.
- W3048138840 hasConcept C185592680 @default.
- W3048138840 hasConcept C191897082 @default.
- W3048138840 hasConcept C192562407 @default.
- W3048138840 hasConcept C199360897 @default.
- W3048138840 hasConcept C2778333438 @default.
- W3048138840 hasConcept C2778541603 @default.
- W3048138840 hasConcept C2779851234 @default.
- W3048138840 hasConcept C41008148 @default.
- W3048138840 hasConcept C42360764 @default.
- W3048138840 hasConcept C52859227 @default.
- W3048138840 hasConcept C544153396 @default.
- W3048138840 hasConcept C555008776 @default.
- W3048138840 hasConcept C62520636 @default.
- W3048138840 hasConcept C64452783 @default.
- W3048138840 hasConcept C68801617 @default.
- W3048138840 hasConcept C71924100 @default.
- W3048138840 hasConcept C73916439 @default.
- W3048138840 hasConcept C89395315 @default.
- W3048138840 hasConceptScore W3048138840C104779481 @default.