Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048138984> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3048138984 endingPage "149" @default.
- W3048138984 startingPage "124" @default.
- W3048138984 abstract "ABSTRACT Probability‐based models are developed using information from a variety of datasets to predict daily surgical volumes weeks in advance. The quest was motivated by the need to make real‐time adjustments to staff capacity and reallocation of the operating room block time based on predicted future demand. We test the notion that more data always leads to better predictions. Four probabilistic prediction models are presented, each parameterized based on real data and information from different sources. We hypothesize that the accuracy of the prediction improves by incorporating additional information. Models are tested for a surgical service at a large hospital using data of 20 months (January 19, 2015–August 31, 2016). We find that incorporating additional information may not improve prediction accuracy if that information is prone to data errors. However, deploying analytical data treatment to ameliorate these errors leads to better predictions. We also compare the predictive ability of the probability‐based models to neural network–based models and find that the neural network models do not outperform simpler models. Managers should critically review the accuracy of the data used in decision‐making. While a greater amount of inherently error‐free information is the best, analytics can enhance the utility of error‐prone data." @default.
- W3048138984 created "2020-08-13" @default.
- W3048138984 creator A5059044510 @default.
- W3048138984 creator A5069861418 @default.
- W3048138984 creator A5082759787 @default.
- W3048138984 date "2020-08-07" @default.
- W3048138984 modified "2023-09-26" @default.
- W3048138984 title "Predicting Daily Surgical Volumes Using Probabilistic Estimates of Providers’ Future Availability" @default.
- W3048138984 cites W1139202946 @default.
- W3048138984 cites W1576372842 @default.
- W3048138984 cites W1984633497 @default.
- W3048138984 cites W1993909846 @default.
- W3048138984 cites W2001950018 @default.
- W3048138984 cites W2015787755 @default.
- W3048138984 cites W2027157239 @default.
- W3048138984 cites W2028361847 @default.
- W3048138984 cites W2028965689 @default.
- W3048138984 cites W2030308591 @default.
- W3048138984 cites W2031404163 @default.
- W3048138984 cites W2037338427 @default.
- W3048138984 cites W2038247134 @default.
- W3048138984 cites W2068747179 @default.
- W3048138984 cites W2072031275 @default.
- W3048138984 cites W2106677039 @default.
- W3048138984 cites W2133295230 @default.
- W3048138984 cites W2146767951 @default.
- W3048138984 cites W2149723649 @default.
- W3048138984 cites W2178991689 @default.
- W3048138984 cites W2735780135 @default.
- W3048138984 cites W2783890820 @default.
- W3048138984 cites W4250124681 @default.
- W3048138984 cites W4256436883 @default.
- W3048138984 doi "https://doi.org/10.1111/deci.12478" @default.
- W3048138984 hasPublicationYear "2020" @default.
- W3048138984 type Work @default.
- W3048138984 sameAs 3048138984 @default.
- W3048138984 citedByCount "1" @default.
- W3048138984 countsByYear W30481389842022 @default.
- W3048138984 crossrefType "journal-article" @default.
- W3048138984 hasAuthorship W3048138984A5059044510 @default.
- W3048138984 hasAuthorship W3048138984A5069861418 @default.
- W3048138984 hasAuthorship W3048138984A5082759787 @default.
- W3048138984 hasConcept C11413529 @default.
- W3048138984 hasConcept C119857082 @default.
- W3048138984 hasConcept C124101348 @default.
- W3048138984 hasConcept C136197465 @default.
- W3048138984 hasConcept C154945302 @default.
- W3048138984 hasConcept C165464430 @default.
- W3048138984 hasConcept C2524010 @default.
- W3048138984 hasConcept C2777210771 @default.
- W3048138984 hasConcept C33923547 @default.
- W3048138984 hasConcept C41008148 @default.
- W3048138984 hasConcept C45804977 @default.
- W3048138984 hasConcept C49937458 @default.
- W3048138984 hasConcept C50644808 @default.
- W3048138984 hasConceptScore W3048138984C11413529 @default.
- W3048138984 hasConceptScore W3048138984C119857082 @default.
- W3048138984 hasConceptScore W3048138984C124101348 @default.
- W3048138984 hasConceptScore W3048138984C136197465 @default.
- W3048138984 hasConceptScore W3048138984C154945302 @default.
- W3048138984 hasConceptScore W3048138984C165464430 @default.
- W3048138984 hasConceptScore W3048138984C2524010 @default.
- W3048138984 hasConceptScore W3048138984C2777210771 @default.
- W3048138984 hasConceptScore W3048138984C33923547 @default.
- W3048138984 hasConceptScore W3048138984C41008148 @default.
- W3048138984 hasConceptScore W3048138984C45804977 @default.
- W3048138984 hasConceptScore W3048138984C49937458 @default.
- W3048138984 hasConceptScore W3048138984C50644808 @default.
- W3048138984 hasIssue "1" @default.
- W3048138984 hasLocation W30481389841 @default.
- W3048138984 hasOpenAccess W3048138984 @default.
- W3048138984 hasPrimaryLocation W30481389841 @default.
- W3048138984 hasRelatedWork W2357085366 @default.
- W3048138984 hasRelatedWork W2961085424 @default.
- W3048138984 hasRelatedWork W3046775127 @default.
- W3048138984 hasRelatedWork W3160244858 @default.
- W3048138984 hasRelatedWork W4285260836 @default.
- W3048138984 hasRelatedWork W4286629047 @default.
- W3048138984 hasRelatedWork W4290792893 @default.
- W3048138984 hasRelatedWork W4306321456 @default.
- W3048138984 hasRelatedWork W4306674287 @default.
- W3048138984 hasRelatedWork W4224009465 @default.
- W3048138984 hasVolume "53" @default.
- W3048138984 isParatext "false" @default.
- W3048138984 isRetracted "false" @default.
- W3048138984 magId "3048138984" @default.
- W3048138984 workType "article" @default.