Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048149718> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3048149718 endingPage "614" @default.
- W3048149718 startingPage "603" @default.
- W3048149718 abstract "The data type and quantity of user load data show an exponential growth, so that the traditional load forecasting methods can hardly meet the load forecasting requirements of massive users. Aiming at this problem, a parallel OS-ELM short-term load forecasting model based on Spark is proposed in this article. By analyzing the characteristics of the Spark framework and the MapReduce framework, the Spark big data processing framework is determined as the basic framework for processing massive user load data, and a parallel K-means load clustering model based on Spark is designed. The on-line sequential learning machine OS-ELM makes the hidden layer data of computing each incremental training dataset mutually independent, therefore, a Spark-based parallel OS-ELM (SBPOS-ELM) algorithm is put forward. The proposed model is applied under the smart electricity big data environment and the training samples are selected using the incremental training dataset to make a short-term prediction of the millions of users’ smart meter electricity load, which verifies the feasibility and effectiveness of the proposed model. At last, comparing with other commonly used short-term load forecasting algorithms, the experimental results show that SBPOS-ELM algorithm has higher accuracy and operation efficiency." @default.
- W3048149718 created "2020-08-13" @default.
- W3048149718 creator A5026431753 @default.
- W3048149718 creator A5045824135 @default.
- W3048149718 creator A5083030133 @default.
- W3048149718 date "2020-04-20" @default.
- W3048149718 modified "2023-10-05" @default.
- W3048149718 title "Spark-based Parallel OS-ELM Algorithm Application for Short-term Load Forecasting for Massive User Data" @default.
- W3048149718 cites W2019949418 @default.
- W3048149718 cites W2032161710 @default.
- W3048149718 cites W2291417755 @default.
- W3048149718 cites W2323256195 @default.
- W3048149718 cites W2326513046 @default.
- W3048149718 cites W2343259376 @default.
- W3048149718 cites W2609968973 @default.
- W3048149718 cites W2716934642 @default.
- W3048149718 cites W2762061038 @default.
- W3048149718 cites W2994696473 @default.
- W3048149718 doi "https://doi.org/10.1080/15325008.2020.1793832" @default.
- W3048149718 hasPublicationYear "2020" @default.
- W3048149718 type Work @default.
- W3048149718 sameAs 3048149718 @default.
- W3048149718 citedByCount "8" @default.
- W3048149718 countsByYear W30481497182021 @default.
- W3048149718 countsByYear W30481497182022 @default.
- W3048149718 countsByYear W30481497182023 @default.
- W3048149718 crossrefType "journal-article" @default.
- W3048149718 hasAuthorship W3048149718A5026431753 @default.
- W3048149718 hasAuthorship W3048149718A5045824135 @default.
- W3048149718 hasAuthorship W3048149718A5083030133 @default.
- W3048149718 hasConcept C11413529 @default.
- W3048149718 hasConcept C119599485 @default.
- W3048149718 hasConcept C119857082 @default.
- W3048149718 hasConcept C121332964 @default.
- W3048149718 hasConcept C124101348 @default.
- W3048149718 hasConcept C127413603 @default.
- W3048149718 hasConcept C199360897 @default.
- W3048149718 hasConcept C206658404 @default.
- W3048149718 hasConcept C2780150128 @default.
- W3048149718 hasConcept C2781215313 @default.
- W3048149718 hasConcept C41008148 @default.
- W3048149718 hasConcept C50644808 @default.
- W3048149718 hasConcept C61797465 @default.
- W3048149718 hasConcept C62520636 @default.
- W3048149718 hasConcept C73555534 @default.
- W3048149718 hasConcept C75684735 @default.
- W3048149718 hasConceptScore W3048149718C11413529 @default.
- W3048149718 hasConceptScore W3048149718C119599485 @default.
- W3048149718 hasConceptScore W3048149718C119857082 @default.
- W3048149718 hasConceptScore W3048149718C121332964 @default.
- W3048149718 hasConceptScore W3048149718C124101348 @default.
- W3048149718 hasConceptScore W3048149718C127413603 @default.
- W3048149718 hasConceptScore W3048149718C199360897 @default.
- W3048149718 hasConceptScore W3048149718C206658404 @default.
- W3048149718 hasConceptScore W3048149718C2780150128 @default.
- W3048149718 hasConceptScore W3048149718C2781215313 @default.
- W3048149718 hasConceptScore W3048149718C41008148 @default.
- W3048149718 hasConceptScore W3048149718C50644808 @default.
- W3048149718 hasConceptScore W3048149718C61797465 @default.
- W3048149718 hasConceptScore W3048149718C62520636 @default.
- W3048149718 hasConceptScore W3048149718C73555534 @default.
- W3048149718 hasConceptScore W3048149718C75684735 @default.
- W3048149718 hasIssue "6-7" @default.
- W3048149718 hasLocation W30481497181 @default.
- W3048149718 hasOpenAccess W3048149718 @default.
- W3048149718 hasPrimaryLocation W30481497181 @default.
- W3048149718 hasRelatedWork W1997217298 @default.
- W3048149718 hasRelatedWork W2043890830 @default.
- W3048149718 hasRelatedWork W2761244844 @default.
- W3048149718 hasRelatedWork W2917146715 @default.
- W3048149718 hasRelatedWork W3183776484 @default.
- W3048149718 hasRelatedWork W3217529043 @default.
- W3048149718 hasRelatedWork W4226328988 @default.
- W3048149718 hasRelatedWork W4226410418 @default.
- W3048149718 hasRelatedWork W4321146132 @default.
- W3048149718 hasRelatedWork W3049749700 @default.
- W3048149718 hasVolume "48" @default.
- W3048149718 isParatext "false" @default.
- W3048149718 isRetracted "false" @default.
- W3048149718 magId "3048149718" @default.
- W3048149718 workType "article" @default.