Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048151070> ?p ?o ?g. }
- W3048151070 endingPage "132" @default.
- W3048151070 startingPage "120" @default.
- W3048151070 abstract "Abstract The need for pollutant-free wastewater has necessitated a huge volume of research on the photocatalytic degradation of organic pollutants. The data obtained from various photocatalytic degradation experimental runs can be employed in data-driven machine learning modelling techniques such as artificial neural networks. In this study, the use of Levenberg-Marquardt-trained artificial neural network for modelling the photocatalytic degradation of chloramphenicol, phenol, azo dye, gaseous styrene, and methylene blue is presented. For each of the photocatalytic degradation processes, 20 neural network architectures were investigated by optimizing their hidden neurons. Optimized ANN configurations of 3−20-1, 3−5-1, 3−2-1, 4−17-1, 4−6-1, and 3−10-1 were obtained for modelling the photodegradation of chloramphenicol, phenol, phenol, azo dye, gaseous styrene, and methylene blue, respectively. The optimized ANN architectures were robust in predicting the degradation of the organic pollutants with R2 > 0.9 at a 95 % confidence level with very low mean absolute errors. The sensitivity analysis using the modified Garson algorithm revealed that all the process parameters significantly influenced the photodegradation of the organic pollutants. The photocatalyst concentration, phenol concentration, pH of the solution, hydrothermal temperature, and methylene blue initial concentration were however found to have the most significant influence on the photodegradation processes. The ANN algorithm can be implemented in a photocatalytic degradation process for making vital decisions regarding the operation of the process." @default.
- W3048151070 created "2020-08-13" @default.
- W3048151070 creator A5007977326 @default.
- W3048151070 creator A5041615497 @default.
- W3048151070 creator A5049878855 @default.
- W3048151070 creator A5058572477 @default.
- W3048151070 creator A5068709071 @default.
- W3048151070 date "2021-01-01" @default.
- W3048151070 modified "2023-10-01" @default.
- W3048151070 title "Modeling the effect of process parameters on the photocatalytic degradation of organic pollutants using artificial neural networks" @default.
- W3048151070 cites W1973311794 @default.
- W3048151070 cites W1978147190 @default.
- W3048151070 cites W1990658019 @default.
- W3048151070 cites W2005522860 @default.
- W3048151070 cites W2016315274 @default.
- W3048151070 cites W2021462338 @default.
- W3048151070 cites W2038909536 @default.
- W3048151070 cites W2053891107 @default.
- W3048151070 cites W2069484949 @default.
- W3048151070 cites W2072462334 @default.
- W3048151070 cites W2076926854 @default.
- W3048151070 cites W2083539657 @default.
- W3048151070 cites W2085257891 @default.
- W3048151070 cites W2094411060 @default.
- W3048151070 cites W2138691440 @default.
- W3048151070 cites W2154651637 @default.
- W3048151070 cites W2195675691 @default.
- W3048151070 cites W2346868242 @default.
- W3048151070 cites W2403782785 @default.
- W3048151070 cites W2508930034 @default.
- W3048151070 cites W2608844463 @default.
- W3048151070 cites W2745515031 @default.
- W3048151070 cites W2763826348 @default.
- W3048151070 cites W2778386642 @default.
- W3048151070 cites W2788180525 @default.
- W3048151070 cites W2791001464 @default.
- W3048151070 cites W2803805746 @default.
- W3048151070 cites W2884311850 @default.
- W3048151070 cites W2885288681 @default.
- W3048151070 cites W2905287144 @default.
- W3048151070 cites W2907641242 @default.
- W3048151070 cites W2933878133 @default.
- W3048151070 cites W2963541545 @default.
- W3048151070 cites W2986321509 @default.
- W3048151070 cites W3007850304 @default.
- W3048151070 cites W4242627021 @default.
- W3048151070 cites W82186934 @default.
- W3048151070 doi "https://doi.org/10.1016/j.psep.2020.07.053" @default.
- W3048151070 hasPublicationYear "2021" @default.
- W3048151070 type Work @default.
- W3048151070 sameAs 3048151070 @default.
- W3048151070 citedByCount "40" @default.
- W3048151070 countsByYear W30481510702020 @default.
- W3048151070 countsByYear W30481510702021 @default.
- W3048151070 countsByYear W30481510702022 @default.
- W3048151070 countsByYear W30481510702023 @default.
- W3048151070 crossrefType "journal-article" @default.
- W3048151070 hasAuthorship W3048151070A5007977326 @default.
- W3048151070 hasAuthorship W3048151070A5041615497 @default.
- W3048151070 hasAuthorship W3048151070A5049878855 @default.
- W3048151070 hasAuthorship W3048151070A5058572477 @default.
- W3048151070 hasAuthorship W3048151070A5068709071 @default.
- W3048151070 hasConcept C111919701 @default.
- W3048151070 hasConcept C127413603 @default.
- W3048151070 hasConcept C154945302 @default.
- W3048151070 hasConcept C161790260 @default.
- W3048151070 hasConcept C178790620 @default.
- W3048151070 hasConcept C183696295 @default.
- W3048151070 hasConcept C185592680 @default.
- W3048151070 hasConcept C186060115 @default.
- W3048151070 hasConcept C21880701 @default.
- W3048151070 hasConcept C24326235 @default.
- W3048151070 hasConcept C2779679103 @default.
- W3048151070 hasConcept C39432304 @default.
- W3048151070 hasConcept C41008148 @default.
- W3048151070 hasConcept C50644808 @default.
- W3048151070 hasConcept C65165184 @default.
- W3048151070 hasConcept C82685317 @default.
- W3048151070 hasConcept C86803240 @default.
- W3048151070 hasConcept C98045186 @default.
- W3048151070 hasConceptScore W3048151070C111919701 @default.
- W3048151070 hasConceptScore W3048151070C127413603 @default.
- W3048151070 hasConceptScore W3048151070C154945302 @default.
- W3048151070 hasConceptScore W3048151070C161790260 @default.
- W3048151070 hasConceptScore W3048151070C178790620 @default.
- W3048151070 hasConceptScore W3048151070C183696295 @default.
- W3048151070 hasConceptScore W3048151070C185592680 @default.
- W3048151070 hasConceptScore W3048151070C186060115 @default.
- W3048151070 hasConceptScore W3048151070C21880701 @default.
- W3048151070 hasConceptScore W3048151070C24326235 @default.
- W3048151070 hasConceptScore W3048151070C2779679103 @default.
- W3048151070 hasConceptScore W3048151070C39432304 @default.
- W3048151070 hasConceptScore W3048151070C41008148 @default.
- W3048151070 hasConceptScore W3048151070C50644808 @default.
- W3048151070 hasConceptScore W3048151070C65165184 @default.
- W3048151070 hasConceptScore W3048151070C82685317 @default.
- W3048151070 hasConceptScore W3048151070C86803240 @default.
- W3048151070 hasConceptScore W3048151070C98045186 @default.