Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048157393> ?p ?o ?g. }
- W3048157393 endingPage "94" @default.
- W3048157393 startingPage "76" @default.
- W3048157393 abstract "A new method is proposed for the analysis of multivariate stochastic volatility models, based on efficient draws of volatility from its conditional posterior distribution. It applies to models with several kinds of cross-sectional dependence. Full autoregression and covariance matrices imply dependent volatility series. Mean factor structure allows conditional correlations to vary in time and covary with conditional variances; factors are conditionally Student’s t, allowing for tail dependence across assets, with factor-specific degrees of freedom. Given factors, returns have heterogeneous Student’s t marginals; a copula completes their joint distribution. Volatility series are drawn as a block, one series at a time. An application using daily returns data for ten currencies shows that all features of the model are important." @default.
- W3048157393 created "2020-08-13" @default.
- W3048157393 creator A5025475323 @default.
- W3048157393 creator A5027117895 @default.
- W3048157393 creator A5047315684 @default.
- W3048157393 date "2021-01-01" @default.
- W3048157393 modified "2023-09-27" @default.
- W3048157393 title "Multivariate stochastic volatility using the HESSIAN method" @default.
- W3048157393 cites W1544551959 @default.
- W3048157393 cites W1669348267 @default.
- W3048157393 cites W1914840709 @default.
- W3048157393 cites W1974001776 @default.
- W3048157393 cites W1990721708 @default.
- W3048157393 cites W1991181216 @default.
- W3048157393 cites W1995937524 @default.
- W3048157393 cites W1998261902 @default.
- W3048157393 cites W2000829673 @default.
- W3048157393 cites W2007895608 @default.
- W3048157393 cites W2044590825 @default.
- W3048157393 cites W2057854588 @default.
- W3048157393 cites W2062510159 @default.
- W3048157393 cites W2064553712 @default.
- W3048157393 cites W2070585177 @default.
- W3048157393 cites W2074511911 @default.
- W3048157393 cites W2079672223 @default.
- W3048157393 cites W2086556391 @default.
- W3048157393 cites W2094669347 @default.
- W3048157393 cites W2097068514 @default.
- W3048157393 cites W2100011707 @default.
- W3048157393 cites W2107335183 @default.
- W3048157393 cites W2128266748 @default.
- W3048157393 cites W2132236499 @default.
- W3048157393 cites W2132448732 @default.
- W3048157393 cites W2135301036 @default.
- W3048157393 cites W2150018836 @default.
- W3048157393 cites W2153155589 @default.
- W3048157393 cites W2159706540 @default.
- W3048157393 cites W2162328283 @default.
- W3048157393 cites W2163669663 @default.
- W3048157393 cites W2165714389 @default.
- W3048157393 cites W2171040943 @default.
- W3048157393 cites W2515333341 @default.
- W3048157393 cites W3098040842 @default.
- W3048157393 cites W3121542497 @default.
- W3048157393 cites W3122854346 @default.
- W3048157393 cites W3122870494 @default.
- W3048157393 cites W3123530756 @default.
- W3048157393 cites W3124282140 @default.
- W3048157393 cites W3124444187 @default.
- W3048157393 cites W3125349010 @default.
- W3048157393 cites W3125358394 @default.
- W3048157393 cites W3125564657 @default.
- W3048157393 cites W4212954408 @default.
- W3048157393 cites W4249773014 @default.
- W3048157393 cites W4367590676 @default.
- W3048157393 doi "https://doi.org/10.1016/j.ecosta.2020.07.002" @default.
- W3048157393 hasPublicationYear "2021" @default.
- W3048157393 type Work @default.
- W3048157393 sameAs 3048157393 @default.
- W3048157393 citedByCount "1" @default.
- W3048157393 countsByYear W30481573932023 @default.
- W3048157393 crossrefType "journal-article" @default.
- W3048157393 hasAuthorship W3048157393A5025475323 @default.
- W3048157393 hasAuthorship W3048157393A5027117895 @default.
- W3048157393 hasAuthorship W3048157393A5047315684 @default.
- W3048157393 hasConcept C105795698 @default.
- W3048157393 hasConcept C122123141 @default.
- W3048157393 hasConcept C149782125 @default.
- W3048157393 hasConcept C159877910 @default.
- W3048157393 hasConcept C161584116 @default.
- W3048157393 hasConcept C165216359 @default.
- W3048157393 hasConcept C172713675 @default.
- W3048157393 hasConcept C17618745 @default.
- W3048157393 hasConcept C177384507 @default.
- W3048157393 hasConcept C203616005 @default.
- W3048157393 hasConcept C28826006 @default.
- W3048157393 hasConcept C33923547 @default.
- W3048157393 hasConcept C43555835 @default.
- W3048157393 hasConcept C85393063 @default.
- W3048157393 hasConcept C91602232 @default.
- W3048157393 hasConceptScore W3048157393C105795698 @default.
- W3048157393 hasConceptScore W3048157393C122123141 @default.
- W3048157393 hasConceptScore W3048157393C149782125 @default.
- W3048157393 hasConceptScore W3048157393C159877910 @default.
- W3048157393 hasConceptScore W3048157393C161584116 @default.
- W3048157393 hasConceptScore W3048157393C165216359 @default.
- W3048157393 hasConceptScore W3048157393C172713675 @default.
- W3048157393 hasConceptScore W3048157393C17618745 @default.
- W3048157393 hasConceptScore W3048157393C177384507 @default.
- W3048157393 hasConceptScore W3048157393C203616005 @default.
- W3048157393 hasConceptScore W3048157393C28826006 @default.
- W3048157393 hasConceptScore W3048157393C33923547 @default.
- W3048157393 hasConceptScore W3048157393C43555835 @default.
- W3048157393 hasConceptScore W3048157393C85393063 @default.
- W3048157393 hasConceptScore W3048157393C91602232 @default.
- W3048157393 hasLocation W30481573931 @default.
- W3048157393 hasOpenAccess W3048157393 @default.
- W3048157393 hasPrimaryLocation W30481573931 @default.