Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048158121> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3048158121 endingPage "1307" @default.
- W3048158121 startingPage "1301" @default.
- W3048158121 abstract "Nowadays, the softwarization and virtualization of resources and services rapidly continue, and along with reading and writing, programming is going to be one of the basic human ability. Thus, the detection of skilled programmers at an early age has become important for economies to strengthen their workforce and compete globally. The current technological momentum shows that when the middle school students of today reach the 2030s, the demand for advanced programming skills will be rapidly increased, expanding as high as 90% between 2016 and 2030. Thus, the identification of these skilled people at an early age is important. Accordingly, this study focused on predicting middle school students’ programming aptitude using artificial neural network (ANN) algorithms. A participant survey was developed and applied to middle school students consisting of fifth, sixth, and seventh graders from Konya Science Center, Turkey. After the completion of the survey, the participants then took the 20-level Classic Maze course (CMC) on Code.org. The participants’ final scores in the CMC were calculated based on the level they completed and the lines of codes they wrote. The best results were obtained using the Bayesian regularization algorithm: Training-R = 9.72284e−1; Test-R = 9.12687e−1, and All-R = 9.597e−1. The results show that ANN is an appropriate machine learning method that can forecast participants’ skills, such as analytical thinking, problem-solving, and programming aptitude." @default.
- W3048158121 created "2020-08-13" @default.
- W3048158121 creator A5078444239 @default.
- W3048158121 creator A5079671396 @default.
- W3048158121 date "2020-12-01" @default.
- W3048158121 modified "2023-10-10" @default.
- W3048158121 title "Prediction of middle school students' programming talent using artificial neural networks" @default.
- W3048158121 cites W1838166440 @default.
- W3048158121 cites W1984514442 @default.
- W3048158121 cites W2032038401 @default.
- W3048158121 cites W2051812123 @default.
- W3048158121 cites W2069129772 @default.
- W3048158121 cites W2116972916 @default.
- W3048158121 cites W2120640415 @default.
- W3048158121 cites W2155482699 @default.
- W3048158121 cites W2195434889 @default.
- W3048158121 cites W2399972537 @default.
- W3048158121 cites W2435198296 @default.
- W3048158121 cites W2501933020 @default.
- W3048158121 cites W2774274765 @default.
- W3048158121 cites W2968251726 @default.
- W3048158121 cites W2088990137 @default.
- W3048158121 doi "https://doi.org/10.1016/j.jestch.2020.07.005" @default.
- W3048158121 hasPublicationYear "2020" @default.
- W3048158121 type Work @default.
- W3048158121 sameAs 3048158121 @default.
- W3048158121 citedByCount "12" @default.
- W3048158121 countsByYear W30481581212020 @default.
- W3048158121 countsByYear W30481581212021 @default.
- W3048158121 countsByYear W30481581212022 @default.
- W3048158121 countsByYear W30481581212023 @default.
- W3048158121 crossrefType "journal-article" @default.
- W3048158121 hasAuthorship W3048158121A5078444239 @default.
- W3048158121 hasAuthorship W3048158121A5079671396 @default.
- W3048158121 hasBestOaLocation W30481581211 @default.
- W3048158121 hasConcept C111919701 @default.
- W3048158121 hasConcept C119857082 @default.
- W3048158121 hasConcept C138496976 @default.
- W3048158121 hasConcept C145420912 @default.
- W3048158121 hasConcept C154945302 @default.
- W3048158121 hasConcept C15744967 @default.
- W3048158121 hasConcept C162324750 @default.
- W3048158121 hasConcept C2778139618 @default.
- W3048158121 hasConcept C2780368719 @default.
- W3048158121 hasConcept C41008148 @default.
- W3048158121 hasConcept C48561166 @default.
- W3048158121 hasConcept C50522688 @default.
- W3048158121 hasConcept C50644808 @default.
- W3048158121 hasConcept C513985346 @default.
- W3048158121 hasConcept C79974875 @default.
- W3048158121 hasConceptScore W3048158121C111919701 @default.
- W3048158121 hasConceptScore W3048158121C119857082 @default.
- W3048158121 hasConceptScore W3048158121C138496976 @default.
- W3048158121 hasConceptScore W3048158121C145420912 @default.
- W3048158121 hasConceptScore W3048158121C154945302 @default.
- W3048158121 hasConceptScore W3048158121C15744967 @default.
- W3048158121 hasConceptScore W3048158121C162324750 @default.
- W3048158121 hasConceptScore W3048158121C2778139618 @default.
- W3048158121 hasConceptScore W3048158121C2780368719 @default.
- W3048158121 hasConceptScore W3048158121C41008148 @default.
- W3048158121 hasConceptScore W3048158121C48561166 @default.
- W3048158121 hasConceptScore W3048158121C50522688 @default.
- W3048158121 hasConceptScore W3048158121C50644808 @default.
- W3048158121 hasConceptScore W3048158121C513985346 @default.
- W3048158121 hasConceptScore W3048158121C79974875 @default.
- W3048158121 hasFunder F4320322821 @default.
- W3048158121 hasIssue "6" @default.
- W3048158121 hasLocation W30481581211 @default.
- W3048158121 hasOpenAccess W3048158121 @default.
- W3048158121 hasPrimaryLocation W30481581211 @default.
- W3048158121 hasRelatedWork W2012177330 @default.
- W3048158121 hasRelatedWork W2527794535 @default.
- W3048158121 hasRelatedWork W2748952813 @default.
- W3048158121 hasRelatedWork W2899084033 @default.
- W3048158121 hasRelatedWork W2961085424 @default.
- W3048158121 hasRelatedWork W4285260836 @default.
- W3048158121 hasRelatedWork W4286629047 @default.
- W3048158121 hasRelatedWork W4306321456 @default.
- W3048158121 hasRelatedWork W4306674287 @default.
- W3048158121 hasRelatedWork W4224009465 @default.
- W3048158121 hasVolume "23" @default.
- W3048158121 isParatext "false" @default.
- W3048158121 isRetracted "false" @default.
- W3048158121 magId "3048158121" @default.
- W3048158121 workType "article" @default.